Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.229515

Keywords:

fuel-air ratio, specific fuel consumption, combustor, isobaric heat capacity, air-breathing engine

Abstract

Determination of specific fuel consumption of air-breathing engines is one of the problems of modeling their performance. As a rule, the estimation error of the specific fuel consumption while calculating air-breathing engine performance is greater than that of thrust. In this work, this is substantiated by the estimation error of the fuel-air ratio, which weakly affects thrust but significantly affects the specific fuel consumption. The presence of a significant error in the fuel-air ratio is explained by the use of simplified methods, which use the dependence of enthalpy as a function of mixture temperature and composition without taking into account the effect of pressure. The developed method to improve the calculation accuracy of specific fuel consumption of air-breathing engines is based on the correction of the fuel-air ratio in the combustor, determined by the existing mathematical models. The correction of the fuel-air ratio is made using the dependences of enthalpy on mixture temperature, pressure and composition. The enthalpy of the mixture is calculated through the average isobaric heat capacity obtained by integrating the isobaric heat capacity, depending on mixture temperature, pressure and composition. The calculation accuracy of the fuel-air ratio was verified by comparing it with the known experimental data on the combustion chamber of the General Electric CF6-80A engine (USA). The average calculation error of the fuel-air ratio does not exceed 3 %. The developed method was applied for correcting the specific fuel consumption for calculating the altitude-airspeed performance of the D436-148B turbofan engine (Ukraine), which made it possible to reduce the estimation error of the fuel-air ratio and specific fuel consumption to an average of 3 %

Author Biographies

Oleh Kislov, National Aerospace University "Kharkiv Aviation Institute"

PhD, Associate Professor

Department of Aviation Engines Theory

Maya Ambrozhevich, National Aerospace University "Kharkiv Aviation Institute"

PhD, Associate Professor

Department of Aerospace Heat Engineering

Mykhailo Shevchenko, National Aerospace University "Kharkiv Aviation Institute"

Postgraduate Student

Department of Aviation Engines Theory

References

  1. Khoreva, E. A., Ezrokhi, Yu. A. (2017). Ordinary Mathematical Models in Calculating the Aviation GTE Parameters. Aerokosmicheskiy nauchniy zhurnal, 3 (1), 1–14.
  2. Boldyrev, O. I., Gorynov, I. M. (2012). Influence of thermal dissociation of hydrocarbonic fuel combustionproductson parameters of working process perspective gas-turbineengines. Modern problems of science and education, 1. Available at: https://www.science-education.ru/pdf/2012/1/15.pdf
  3. Abdelwahid, M. B., Cherkasov, A. N., Fedorov, R. M., Fedechkin, C. S. (2014). Numerical investigation of erosion effect on altitude-speed characteristics of a turbojet engine. Vestnik UGATU, 18 (3), 16–22. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/1758/1637
  4. Walsh, P. P., Fletcher, P. (2004). Gas Turbine Performance. Blackwell Science Ltd. doi: https://doi.org/10.1002/9780470774533
  5. Rahman, M. M., Ibrahim, T. K., Abdalla, A. N. (2011). Thermodynamic performance analysis of gas-turbine power-plant. International Journal of the physical Science, 6 (14), 3539–3550. Available at: https://www.researchgate.net/publication/233532668_Thermodynamic_performance_analysis_of_gas_turbine_power_plant
  6. Oyedepo, S. O., Kilanko, O. (2014). Thermodynamic Analysis of a Gas Turbine Power Plant Modelled with an Evaporative Cooler. International Journal of Thermodynamics, 17 (1). doi: https://doi.org/10.5541/ijot.480
  7. Kotowicz, J., Job, M., Brzęczek, M., Nawrat, K., Mędrych, J. (2016). The methodology of the gas turbine efficiency calculation. Archives of Thermodynamics, 37 (4), 19–35. doi: 0https://doi.org/10.1515/aoter-2016-0025
  8. Andrei, I.-C., Rotaru, C., Fadgyas, M.-C., Stroe, G., Leonida, Niculescu, M. (2017). Numerical investigation of turbojet engine thrust correlated with the combustion chamber's parameters. Scientific Research and Education In The Air Force, 19 (1), 23–34. https://doi.org/10.19062/2247-3173.2017.19.1.2
  9. Qi, L., Zhao, N., Wang, Z., Yang, J., Zheng, H. (2018). Pressure Gain Characteristic of Continuously Rotating Detonation Combustion and its Influence on Gas Turbine Cycle Performance. IEEE Access, 6, 70236–70247. doi: https://doi.org/10.1109/access.2018.2880994
  10. Hashmi, M. B., Lemma, T. A., Abdul Karim, Z. A. (2019). Investigation of the Combined Effect of Variable Inlet Guide Vane Drift, Fouling, and Inlet Air Cooling on Gas Turbine Performance. Entropy, 21 (12), 1186. doi: https://doi.org/10.3390/e21121186
  11. Udeh, G. T., Udeh, P. O. (2019). Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant. Renewable Energy, 133, 295–306. doi: https://doi.org/10.1016/j.renene.2018.10.036
  12. Dobromirescu, C., Vilag, V. (2019). Energy conversion and efficiency in turboshaft engines. E3S Web of Conferences, 85, 01001. doi: https://doi.org/10.1051/e3sconf/20198501001
  13. Kofman, V. (2016). Methodology of experimental and estemated determination of performance indicators of the main gte combustion chambers based on the results of their autonomous tests on the chamber stands. Perm National Research Polytechnic University Aerospace Engineering Bulletin, 46, 6–39. doi: https://doi.org/10.15593/2224-9982/2016.46.01
  14. Il'ichev, Ya. T. (1975). Termodinamicheskiy raschet vozdushno-reaktivnyh dvigateley. Moscow: Tsentral'niy institut aviatsionnogo motorostroeniya, 126.
  15. Kuznetsov, V. I., Shpakovsky, D. D. (2020). Methodology for estimating the specific fuel consumption of a two-circuit turbojet engine. Journal of «Almaz – Antey» Air and Defence Corporation, 2, 93–102. doi: https://doi.org/10.38013/2542-0542-2020-2-93-102
  16. Rivkin, S. L. (1987). Termodinamicheskie svoystva gazov. Moscow: Energoatomizdat, 288.
  17. Kishalov, A. E., Markina, K. V. (2017). Research and prediction of thermal gas parameters flow combustion chambers of aviation GTE. Vestnik voronezhskogo gosudarstvennogo tehnicheskogo universiteta, 13 (1), 60–68.
  18. Kyprianidis, K. G., Sethi, V., Ogaji, S. O. T., Pilidis, P., Singh, R., Kalfas, A. I. (2009). Thermo-Fluid Modelling for Gas Turbines – Part I: Theoretical Foundation and Uncertainty Analysis. Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine. doi: https://doi.org/10.1115/gt2009-60092
  19. Gazzetta Junior, H., Bringhenti, C., Barbosa, J. R., Tomita, J. T. (2017). Real-Time Gas Turbine Model for Performance Simulations. Journal of Aerospace Technology and Management, 9 (3), 346–356. doi: https://doi.org/10.5028/jatm.v9i3.693
  20. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10. Available at: https://www.nist.gov/srd/refprop
  21. Li, H., Huang, H., Xu, G., Wen, J., Wu, H. (2017). Performance analysis of a novel compact air-air heat exchanger for aircraft gas turbine engine using LMTD method. Applied Thermal Engineering, 116, 445–455. doi: https://doi.org/10.1016/j.applthermaleng.2017.01.003
  22. Klein, S. A. (2015). Engineering Equation Solver (EES). F-Chart Software. Madison, WI.
  23. Boldyrev, O. I. (2012). Metodika rascheta ravnovesnogo sostoyaniya gomogennoy smesi produktov sgoraniya uglevodorodnogo topliva v kamerah sgoraniya GTD. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tehnicheskogo universiteta, 16 (2 (47)), 106–112. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/701/535
  24. Dolmatov, D. A. (2011). Management of air hydrocarbon flames by short arc. Visnyk dvyhunobuduvannia, 2, 41–51.
  25. Ambrozhevich, M. V., Shevchenko, M. A. (2019). Analytical determination of isobaric heat capacity of air and combustion gases with influence of pressure and effect of thermal dissociation. Aerospace technic and technology, 1 (153), 4–17. doi: https://doi.org/10.32620/aktt.2019.1.01
  26. Dodds, W., Ekstedt, E., Bahr, D. (1983). Methanol combustion in a CF6l-80A engine combustor. 19th Joint Propulsion Conference. doi: https://doi.org/10.2514/6.1983-1138
  27. Dodds, W., Ekstedt, E., Bahr, D., Fear, J. (1982). NASA/General Electric broad-specification fuels combustion technology program - Phase I results and status. 18th Joint Propulsion Conference. doi: https://doi.org/10.2514/6.1982-1089
  28. Dvigatel' D-436-148. Rukovodstvo po tehnicheskoy ekspluatatsii. Available at: https://www.studmed.ru/dvigatel-d-436-148-rukovodstvo-po-tehnicheskoy-ekspluatacii_d8160eb83ce.html
  29. Ambrozhevich, M. V., Shevchenko, M. A. (2019). Equations of average isobaric heat capacity of air and combustion gases with influence of pressure and effect of thermal dissociation. Aerospace Technic and Technology, 2, 18–29. doi: https://doi.org/10.32620/aktt.2019.2.02
  30. Glushko, V. P. (Ed.) (1978). Termodinamicheskie svoystva individual'nyh veschestv. Vol. 1, Kn. 2. Moscow: «Nauka», 328.
  31. ASTM D1655-20d. Standard Specification for Aviation Turbine Fuels (2020). ASTM International, West Conshohocken, PA. doi: https://doi.org/10.1520/d1655
  32. Druzhinin, L. N., Shvets, L. I., Malinina, N. S. (1983). Metod i podprogramma rascheta termodinamicheskih parametrov vozduha i produktov sgoraniya uglevodorodnyh topliv. Rukovodyaschiy tehn. material aviatsionnoy tehniki. RTM 1677–83. Dvigateli aviatsionnye i gazoturbinnye. Moscow, 68.
  33. Demenchonok, V. P., Druzhinin, L. N., Parhomov, A. L. et. al.; Shlyahtenko, S. M., Sosunova, V. A. (Eds.) (1979). Teoriya dvuhkonturnyh turboreaktivnyh dvigateley. Moscow: Mashinostroenie, 432.
  34. Druzhinin, L. N., Shvets, L. I., Lanshin, A. I. (1979). Matematicheskoe modelirovanie GTD na sovremennyh EVM pri issledovanii parametrov i harakteristik aviatsionnyh dvigateley. Moscow: Trudy TSIAM, 45.

Downloads

Published

2021-04-30

How to Cite

Kislov, O., Ambrozhevich, M., & Shevchenko, M. (2021). Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines . Eastern-European Journal of Enterprise Technologies, 2(8 (110), 23–30. https://doi.org/10.15587/1729-4061.2021.229515

Issue

Section

Energy-saving technologies and equipment