Improving energy efficiency of the systems for obtaining water from atmospheric air




water from atmospheric air, refrigeration machines, absorption refrigeration units, solar energy


This paper outlines the prospect of obtaining water from atmospheric air by cooling it to the dew point temperature using refrigeration machines in order to partially reduce water scarcity in the arid regions of our planet. To minimize energy costs in the systems for obtaining water from atmospheric air, it is proposed to utilize solar energy with absorption refrigeration units (ARUs) acting as a source of artificial cold.

The characteristic thermodynamic processes have been analyzed in a modernized ARU, capable of working at a lower thermal energy source's temperature than its analogs. The possibility has been studied to reduce the temperature of the heat source by including a solution vaporizer in the ARU scheme. The analysis involved an authentic method based on the balance of specific streams of ARU working body components and actual boundary conditions at characteristic points of the cycle. A limit was shown for the level of a minimum boiling temperature in the ARU generator (from 90 °C) when the systems for obtaining water from atmospheric air are operated under current climatic conditions.

The simulation of heat-and-mass exchange processes during contact interaction between a steam-gas mixture and ammonia water solution was carried out.

Based on variant calculations, it has been shown that the proposed ARU structure with an adiabatic solution vaporizer could work as part of systems to obtain water from atmospheric air at a hot spring temperature above 100 °C and constructively enough fits into the element base of standard models.

It has been proposed to use two types of solar thermal energy sources to operate ARU. In a tropical climate, with vacuum solar collectors or solar energy hubs; in a temperate climate zone, with solar collectors with water as a heat carrier

Author Biographies

Nataliia Bilenko, Odessa National Academy of Food Technologies

Postgraduate Student

Department of Oil and Gas Technologies, Engineering and Power Engineering

Oleksandr Titlov, Odessa National Academy of Food Technologies

Doctor of Technical Sciences, Professor, Head of Department

Department of Oil and Gas Technologies, Engineering and Power Engineering


  1. Mehanizm «OON – vodnye resursy». Mezhdunarodnoe desyatiletie deystviy «Voda dlya zhizni», 2005-2015 gody. Available at:
  2. Thimmaraju, M., Sreepada, D., Babu, G. S., Dasari, B. K., Velpula, S. K., Vallepu, N. (2018). Desalination of Water. Desalination and Water Treatment. doi:
  3. Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2007). Directions of perfection of water supply in the countries of the arabian peninsula. Modern problems of science and education, 6, 13–17. Available at:
  4. Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R., Asadollahzadeh, M. (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable and Sustainable Energy Reviews, 120, 109627. doi:
  5. Al' Maytami Valid Abdulvahid Mohammed, Frumin, G. T. (2008). Ecologically safe technologies of water supply in the countries of arabian peninsula. Modern problems of science and education, 3, 111–115. Available at:
  6. Tu, Y., Wang, R., Zhang, Y., Wang, J. (2018). Progress and Expectation of Atmospheric Water Harvesting. Joule, 2 (8), 1452–1475. doi:
  7. Srivastava, S., Yadav, A. (2018). Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Solar Energy, 169, 302–315. doi:
  8. Zolfagharkhani, S., Zamen, M., Shahmardan, M. M. (2018). Thermodynamic analysis and evaluation of a gas compression refrigeration cycle for fresh water production from atmospheric air. Energy Conversion and Management, 170, 97–107. doi:
  9. The European Solar Thermal Industry Federation (ESTIF). Available at:
  10. Thermal solar line. Rotartica, air conditioning appliances: Solar Line, single effect 4,5kW. Available at:
  11. Perel'shteyn, B. H. (2008). Novye energeticheskie sistemy. Kazan': Izd-vo Kazan. gos. tehn. un-ta, 208.
  12. Vasyliv, O. B., Kovalenko, O. O. (2009). Struktura ta shliakhy ratsionalnoho vykorystannia vody na kharchovykh pidpryiemstvakh. Naukovi pratsi ONAKhT, 35, 54–58.
  13. Elsheniti, M. B., Elsamni, O. A., Al-dadah Raya K., Mahmoud, S., Elsayed, E., Saleh, K. (2018). Adsorption Refrigeration Technologies. Sustainable Air Conditioning Systems. doi:
  14. Vasyliv, O. B., Titlov, O. S., Osadchuk, Ye. O. (2015). Pat. No. 100195 UA. Sposib oderzhannia vody z atmosfernoho povitria. No. u201501512; declareted: 20.02.2015; published: 10.07.2015, Bul. No. 13. Available at:
  15. Busso, A., Franco, J., Sogari, N., Cáceres, M. (2011). Attempt of integration of a small commercial ammonia-water absorption refrigerator with a solar concentrator: Experience and results. International Journal of Refrigeration, 34 (8), 1760–1775. doi:
  16. Gutiérrez, F. (1988). Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation. Solar Energy, 40 (1), 17–23. doi:
  17. Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Yu. (2014). Determination of power efficient operating conditions of absorption water-ammonia refrigerating machine in the systems for obtaining water from atmospheric air. Refrigerating and accompanying technologies, 50 (4), 54–57. doi:
  18. Osadchuk, E., Titlov, A., Kuzakon, V., Shlapak, G. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology audit and production reserves, 3 (3 (23)), 30–37. doi:
  19. Osadchuk, E. A., Titlov, A. S., Vasyliv, O. B., Mazurenko, S. Yu. (2014). Poisk energeticheski effektivnostivnyh rezhimov raboty absorbtsionnoy vodoammiachnoy holodil'noy mashiny v sistemah polucheniya vody iz atmosfernogo vozduha. Naukovi pratsi ONAKhT, 1 (45), 65–69.
  20. Gerhard, K. (1999). Pat. No. 57849 UA. Absorption cooling machine. No. 2001031479; declareted: 03.09.1999; published: 15.07.2003, Bul. No. 7. Available at:
  21. Natural Refrigerants. Available at:
  22. Hobin, V. A., Titlova, O. A. (2014). Energoeffektivnoe upravlenie absorbtsionnymi holodil'nikami. Kherson: Grin' D.S., 216.
  23. Tiukhai, D. S. (1999). Poshuk enerhozberihaiuchykh rezhymiv roboty absorbtsiyne-dyfuziynoi tekhniky na bazi unifikovanoi ADKhM. Naukovi pratsi ONAKhT, 20, 229–234.
  24. Osadchuk, Ye., Titlov, О. (2020). Search for energy efficient modes of systems operation for obtaining water from atmospheric air on the basis of absorption water-ammonia thermal transformers of heat and solar collectors. Refrigeration Engineering and Technology, 56 (3-4), 78–91. doi:
  25. Titlov, A. S. (2008). Povyshenie energeticheskoy effektivnosti absorbtsionnyh holodil'nyh priborov. Naukovі pratsі ONAHT, 1 (34), 295–303.
  26. Ishchenko, I. M., Titlov, O. S. (2018). Improvement of regime parameters of water-absorbing ammonia refrigeration units operating in a wide range of ambient temperatures. Refrigeration Engineering and Technology, 54 (3), 10–20. doi:
  27. Galimova, L. I. (1997). Absorbtsionnye holodil'nye mashiny i teplovye nasosy. Astrahan', 226.
  28. Ischenko, I. N. (2010). Modelirovanie tsiklov nasosnyh i beznasosnyh absorbtsionnyh holodil'nyh agregatov. Naukovi pratsi ONAKhT, 2 (38), 393–405.
  29. Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negotsiant», 712.
  30. Mazouz, S., Mansouri, R., Bellagi, A. (2014). Experimental and thermodynamic investigation of an ammonia/water diffusion absorption machine. International Journal of Refrigeration, 45, 83–91. doi:
  31. Jemaa, R. B., Mansouri, R., Boukholda, I., Bellagi, A. (2016). Experimental investigation and exergy analysis of a triple fluid vapor absorption refrigerator. Energy Conversion and Management, 124, 84–91. doi:
  32. Mansouri, R., Bourouis, M., Bellagi, A. (2017). Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Applied Thermal Engineering, 113, 653–662. doi:
  33. Yıldız, A., Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption refrigeration system. Energy, 60, 407–415. doi:
  34. Ben Jemaa, R., Mansouri, R., Boukholda, I., Bellagi, A. (2017). Experimental characterization and performance study of an ammonia–water–hydrogen refrigerator. International Journal of Hydrogen Energy, 42 (13), 8594–8601. doi:
  35. Taieb, A., Mejbri, K., Bellagi, A. (2016). Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle. Energy, 115, 418–434. doi:
  36. Ersöz, M. A. (2015). Investigation the effects of different heat inputs supplied to the generator on the energy performance in diffusion absorption refrigeration systems. International Journal of Refrigeration, 54, 10–21. doi:
  37. Jelinek, M., Levy, A., Borde, I. (2016). The influence of the evaporator inlet conditions on the performance of a diffusion absorption refrigeration cycle. Applied Thermal Engineering, 99, 979–987. doi:
  38. Srikhirin, P., Aphornratana, S. (2002). Investigation of a diffusion absorption refrigerator. Applied Thermal Engineering, 22 (11), 1181–1193. doi:
  39. Bogdanov, S. N., Burtsev, S. I., Ivanov, O. P., Kupriyanova, A. V. (1999). Holodil'naya tehnika. Konditsionirovanie vozduha. Svoystva veschestv. Sankt-Peterburg: SPbGAHPT (Sankt-Peterburgskaya gosudarstvennaya akademiya holoda i pischevyh tehnologiy), 320.
  40. Osadchuk, E. A., Titlov, A. S. (2011). Analiticheskie zavisimosti dlya rascheta termodinamicheskih parametrov i teplofizicheskih svoystv vodoammiachnogo rastvora. Naukovi pratsi ONAKhT, 1 (39), 178–182.
  41. Titlov, A. S., Vasylsv, O. B., Adambaev, D. B. (2018). Modeling of the manual non-stopped current modes of the liquid phase of the working body in the elements of absorption refrigerating devices. Refrigeration Engineering and Technology, 54 (3), 21–32. doi:
  42. Osipov, Yu. V., Tret'yakov, N. P., Nekrasov, N. N. (1971). Teplo- i massoobmen pri absorbtsii ammiaka vodoammiachnym rastvorom iz vodoammiachnoy smesi. Holodil'naya tehnika, 9, 47–50.
  43. Du, S., Wang, R. Z., Lin, P., Xu, Z. Z., Pan, Q. W., Xu, S. C. (2012). Experimental studies on an air-cooled two-stage NH 3 -H 2 O solar absorption air-conditioning prototype. Energy, 45 (1), 581–587. doi:
  44. Galimova, L. V., Vedeneeva, A. I. (2014). Scientific and practical foundations of removal of application to serving absorption water-ammonia chiller. Nauchniy zhurnal NIU ITMO. Seriya «Holodil'naya tehnika i konditsionirovanie», 1. Available at:
  45. Kaynakli, O., Yamankaradeniz, R. (2007). Thermodynamic analysis of absorption refrigeration system based on entropy generation. Current Science, 92 (4), 472–479.




How to Cite

Bilenko, N., & Titlov, O. (2021). Improving energy efficiency of the systems for obtaining water from atmospheric air . Eastern-European Journal of Enterprise Technologies, 2(8 (110), 31–40.



Energy-saving technologies and equipment