Thermodynamic analysis of heat-energized refrigeration machine with carbon dioxide

Authors

  • Татьяна Владиленовна Морозюк Marchstr. 18, Berlin 10587, Germany, Germany
  • Сергей Васильевич Гайдук The V. S. Martynovsky Institute of Refrigeration Dvoryanskaya, 1/3, Odessa, Ukraine, 62026, Ukraine
  • Лариса Ивановна Морозюк Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration Cryogenic Dvoryanskaya, 1/3, Odessa, Ukraine, 62026, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.22990

Keywords:

thermodynamic analysis, exergy efficiency, exergy, fuel, product, destruction, carbon dioxide, heat-energized refrigeration machine

Abstract

The stages of creating a circuit-cycle design of a heat-energized refrigeration machine using carbon dioxide as a working fluid are considered in the paper. The purpose of the machine development is to get cold using a low-temperature heat of enterprises, as a way of saving energy and material resources. The thermodynamic analysis for generating a machine circuit using the "cycle method", the energy and exergy analysis of parts and the machine in general, in a wide range of temperatures and pressure in the gas heater, was conducted. The analysis showed that the machine can work in a wide range of the heating source and different pressures in the gas heater, but their change affects the effectiveness of other machine parts, which affects the exergy efficiency of the machine and its parts. The obtained results of the analysis are useful for further implementation of the machine, namely modeling, design and selection of machine parts for the maximum efficiency.

Author Biographies

Татьяна Владиленовна Морозюк, Marchstr. 18, Berlin 10587, Germany

Professor
Department of Exergy-based methods for refrigeration systems

Сергей Васильевич Гайдук, The V. S. Martynovsky Institute of Refrigeration Dvoryanskaya, 1/3, Odessa, Ukraine, 62026

PhD Student

Odessa National Academy of Food Technologies

Лариса Ивановна Морозюк, Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration Cryogenic Dvoryanskaya, 1/3, Odessa, Ukraine, 62026

Doctor of Technical Sciences, associate professor

References

  1. Орехов, И. И. Абсорбционные преобразователи теплоты [Текст]: учеб. пособие / И. И. Орехов, Л. С. Тимофеевский, С. В. Караван. – Л. Химия Ленингр. – 1989. – 207 с.
  2. Шумелишский, М. Г. Эжекторные холодильные машины [Текст] / М. Г. Шумелишский. – Государственное издательство торговой литературы, Москва, 1961. – 158 с
  3. Чистяков, Ф. М. Холодильные турбоагрегаты [Текст] / Ф. М. Чистяков. – М.: Машиностроение, 1974. – 301 с.
  4. Чистяков, Ф. Холодильный турбоагрегат с приводом от турбины работающей на холодильном агенте [Текст] / Ф. Чистяков, А. Плотников // Холодильная техника и технология. – 1952. – № 3. – С. 16–19.
  5. Баренбойм, А. Б. Холодильные центробежные компрессоры [Текст] / А. Б. Баренбойм. – Одесса, 2004. – 208 с.
  6. Barenboim, А. B. Heat – using refrigeration machines for agriculture [Тext] / A. B. Barenboim, T. V. Morosuk, L. I. Morosuk // Science et technique du froid – Refrigeration science and technology. – 1998. – Vol. 6. – P. 216–220.
  7. Горбенко, Г. А. Применение диоксида углерода в холодильных технологиях [Текст] / Г. А. Горбенко, И. В. Чайка, П. Г. Гакал, Р. Ю. Турна // Технические газы. – 2009. – № 4. – С. 18–22.
  8. Bitzer Kühlmaschinenbau GmbH. [Электронный ресурс] / Обзор хладагентов. 2004 – № 13. А-501-13. – 36 с. – Режим доступа: http://ykaxolod.com.ua/file/Обзор%20хладагентов%20и%20их%20взаимозаменяемость.pdf
  9. Padalkar, A. S. Carbon Dioxide as Natural Refrigerant [Тext] / A. S. Padalkar, A. D. Kadam // International journal of applied engineering research, dindigul. – 2010. – Vol. 1, № 2. – P. 261–272
  10. Chen, Y. Carbon dioxide cooling and power combined cycle for mobile applications [Text] / Y. Chen, P. Lundqvist. – Paper pub. and pres. at 7 th IIR Gustav Lorentzen, Natural Working Fluids. Trondheim, Norway, 2006. – 127 р.
  11. Lillo, T. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility [Тext] / T. Lillo, W. Windes, T. Totemeier, R. Moore // Idaho National Engineering and Environmental Laboratory (INEEL). October. – 2004. – № 02-190 – 28 р. – Режим доступа: http://www.inl.gov/technicalpublications/Documents/2906955.pdf
  12. Lee, T. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems [Тext] / T. Lee, C. Liu, T. Chen // International Journal of Refrigeration. – 2006. – № 29. – P. 1100–1108. – Режим доступа: http://www.sciencedirect.com/science/article/pii/S0140700706000569
  13. Sarkar, J. Review on cycle modifications of transcritical CO2 refrigeration and heat pump systems [Тext] / J. Sarkar // Journal Advanced Research Mechanical Engineering. – 2010. – № 1(1). – P. 22–29.
  14. Морозюк, Т. В. Теория холодильных машин и тепловых насосов [Текст] / Т. В. Морозюк. – Одесса: Студия «Негоциант», 2006. – 712 с.
  15. Morosuk, T. Entropy-cycle method for analysis of refrigeration machine and heat pump cycles [Text] / T. Morosuk, R. Nikulshin, L. Morosuk // THERMAL SCIENCE. – 2006. – Vol. 10, № 1. – P. 111–124.
  16. Мартыновский, B. C. Анализ действительных термодинамических циклов [Текст] / B. C. Мартыновский. – М.: Энергия, 1972. – 216 с.
  17. Гайдук, С. В. Методи створення схеми тепловикористальної холодильної машини з робочою речовиною діоксидом вуглецю [Текст] / С. В. Гайдук // Холодильная техника и технология. – 2014. – № 1 (147). – С. 16–23.
  18. А. с. UA №72660, МПК F25В27/00. Компресорна тепловикористальна холодильна машина [Текст] / Морозюк Л. И., Гайдук С. В. // Одеська державна академія холоду. – №u201201563; заявл. 13.02.2012; опубл. 27.08.2012, Бюл. №16. – 4 с.
  19. Морозюк, Л. І. Можливості створення компресорної тепловикористальної холодильної машини [Текст] / Л. І. Морозюк, С. В. Гайдук // Холодильная техника и технология. – 2012. – № 4 (138). – С. 17–21.
  20. Bejan, A. Thermal Design and Optimization [Тext] / A. Bejan, G. Tsatsaronis, M. Moran. – New York: John Wiley &
  21. Sons, 1996. – 542 р.
  22. Тсатсаронис, Дж. Взаимодействие термодинамики и экономики для минимизации стоимости энергопреобразующей системы [Текст] / Дж. Тсатсаронис; пер. с англ. Т. В. Морозюк. – Одесса: Студия «Негоциант», 2002. – 152 с.
  23. Bejan, A. Advanced Engineering Thermodynamics [Text] / A. Bejan. – New York: John Wiley & Sons; 1988. – 758 p.
  24. Orehov, I. I., Timofeevskij, L. S., Karavan, S. V. (1989). Absorbcionnye preobrazovateli teploty. Himija Leningr, 207.
  25. Shumelishskij, M. G. (1961). Jezhektornye holodil'nye mashiny. Gosudarstvennoe izdatel'stvo torgovoj literatury, Moskva, 158.
  26. Chistjakov, F. M. (1974). Holodil'nye turboagregaty. Mashinostroenie, 301.
  27. Chistjakov, F., Plotnikov, A. (1952). Holodil'nyj turboagregat s privodom ot turbiny rabotajushhej na holodil'nom agente. Holodil'naja tehnika i tehnologija, 3, 16–19.
  28. Barenbojm, A. B. (2004). Holodil'nye centrobezhnye kompressory. Odessa, 208.
  29. Barenboim, A. B., Morosuk, T. V., Morosuk, L. I. (1998). Heat – using refrigeration machines for agriculture. Science et technique du froid – Refrigeration science and technology, Vol. 6, 216–220.
  30. Gorbenko, G. A., Chajka, I. V., Gakal, P. G., Turna, R. Ju. (2009). Primenenie dioksida ugleroda v holodil'nyh tehnologijah. Tehnicheskie gazy, 4, 18–22.
  31. Bitzer Kühlmaschinenbau GmbH. Obzor hladagentov (2004). № 13. A-501-13, 36. Available at: http://ykaxolod.com.ua/file/Obzor%20hladagentov%20i%20ih%20vzaimozamenjaemost'.pdf
  32. Padalkar, A. S., Kadam, A. D. (2010). Carbon Dioxide as Natural Refrigerant. International journal of applied engineering research, dindigul, Vol. 1, № 2, 261–272
  33. Chen, Y., Lundqvist, P. (2006). Carbon dioxide cooling and power combined cycle for mobile applications. Paper pub. and pres. at 7 th IIR Gustav Lorentzen, Natural Working Fluids. Trondheim, Norway, 127.
  34. Lillo, T., Windes, W., Totemeier, T., Moore, R. (2004). Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility. Idaho National Engineering and Environmental Laboratory (INEEL). October. № 02-190, 28. Available at: http://www.inl.gov/technicalpublications/Documents/2906955.pdf
  35. Lee, T., Liu, C., Chen, T. (2006). Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. International Journal of Refrigeration, 29, 1100–1108. Available at: http://www.sciencedirect.com/science/article/pii/S0140700706000569
  36. Sarkar, J. (2010). Review on cycle modifications of transcritical CO2 refrigeration and heat pump systems. Journal Advanced Research Mechanical Engineering, 1(1), 22–29.
  37. Morozjuk, T. V. (2006). Teorija holodil'nyh mashin i teplovyh nasosov. Odessa: Studija «Negociant», 712.
  38. Morosuk, T., Nikulshin, R., Morosuk, L. (2006). Entropy-cycle method for analysis of refrigeration machine and heat pump cycles. THERMAL SCIENCE, Vol. 10, № 1, 111–124.
  39. Martynovskij, B. C. (1972). Analiz dejstvitel'nyh termodinamicheskih ciklov. Jenergija, 216.
  40. Gajduk, S. V. (2014). Metodi stvorennja shemi teplovikoristal'noї holodil'noї mashini z robochoju rechovinoju dіoksidom vuglecju. Holodil'naja tehnika i tehnologija, 1 (147), 16–23.
  41. Morozjuk, L. I., Gajduk, S. V. (27.08.2012). UA №72660, MPK F25V27/00. Kompresorna teplovikoristal'na holodil'na mashina. Odes'ka derzhavna akademіja holodu. №u201201563, № 16, 4.
  42. Morozjuk, L. І., Gajduk, S. V. (2012). Mozhlivostі stvorennja kompresornoї teplovikoristal'noї holodil'noї mashini. Holodil'naja tehnika i tehnologija, 4 (138), 17–21.
  43. Bejan, A., Tsatsaronis, G., Moran, M. (1996). Thermal Design and Optimization. New York: John Wiley & Sons, 542.
  44. Tsatsaronis, Dzh. (2002). Vzaimodejstvie termodinamiki i jekonomiki dlja minimizacii stoimosti jenergopreobrazujushhej sistemy. Odessa: Studija «Negociant», 152.
  45. Bejan, A. (1988). Advanced Engineering Thermodynamics. New York: John Wiley & Sons, 758.

Published

2014-04-22

How to Cite

Морозюк, Т. В., Гайдук, С. В., & Морозюк, Л. И. (2014). Thermodynamic analysis of heat-energized refrigeration machine with carbon dioxide. Eastern-European Journal of Enterprise Technologies, 2(8(68), 36–44. https://doi.org/10.15587/1729-4061.2014.22990

Issue

Section

Energy-saving technologies and equipment