Investigation of surfactant effect during synthesis of magnesium oxide nanoparticles from bittern using ultrasonic destruction process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.229908

Keywords:

magnesium oxide, nanoparticles, bittern, ultrasonic destruction, surfactants, anionic, cationic, amphoteric, non-ionic

Abstract

Magnesium oxide (MgO) nanoparticles have been widely used in a variety of applications because of their good surface reactivity. Magnesium oxide from bittern has a larger surface area compared to magnesium oxide from calcined magnesite and magnesium ions precipitation from bittern using sodium hydroxide has higher purity than using calcium hydroxide or ammonium hydroxide. In this research, sodium hydroxide was added to a bittern solution obtaining magnesium hydroxide precipitate, followed by the calcination process to produce magnesium oxide. Nano magnesium oxide was synthesized by the ultrasonic destruction process using ethanol and 2-propanol as media. In this study, sonication time and particle concentration effect on the ultrasonic destruction process were investigated. During the process, the sonication time was varied between 8, 16, 32, 64, and 128 minutes while the magnesium oxide concentration was varied between 1 %, 2 %, and 3 %. Increasing sonication time and particle concentration will decrease the particle size. The previous study shows that particles with very small sizes tend to have an agglomeration effect. The aim of this work is to optimize nano magnesium oxide production from bittern. Surfactant addition was also studied to prevent agglomeration between particles. Four types of surfactant namely anionic (sodium lauryl sulfate), cationic (cetyl tri-methyl-ammonium bromide), amphoteric (fatty acid amido alkyl betaine), and non-ionic (nonylphenol 10 ethoxylated) with a concentration of 1 % and a volume of 0.125 ml were added during the second ultrasonic destruction process. All types of surfactants have a positive effect to prevent agglomeration during the ultrasonic destruction process, with the amphoteric surfactant having the highest performance

Author Biographies

Fariza Eka Yunita, Indonesian Institute of Sciences (LIPI)

Doctor of Science, Junior Researcher

Research Center for Metallurgy and Material

Eko Sulistiyono, Indonesian Institute of Sciences (LIPI)

Master of Engineering, Senior Researcher

Research Center for Metallurgy and Material

Nadia Chrisayu Natasha, Indonesian Institute of Sciences (LIPI)

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Ahmad Rizky Rhamdani, Indonesian Institute of Sciences (LIPI)

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Florentinus Firdiyono, Indonesian Institute of Sciences (LIPI)

Doctor of Engineering, Professor

Research Center for Metallurgy and Material

Latifa Hanum Lalasari, Indonesian Institute of Sciences (LIPI)

Doctor of Engineering, Senior Researcher

Research Center for Metallurgy and Material

Tri Arini, Indonesian Institute of Sciences (LIPI)

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Enggar Setya Widyaningrum, Universitas Sultan Ageng Tirtayasa

Bachelor of Engineering

Department of Metallurgy Engineering

Erlina Yustanti, Universitas Sultan Ageng Tirtayasa

Doctor of Material Science, Associate Professor

Department of Metallurgy Engineering

References

  1. Burda, C., Chen, X., Narayanan, R., El-Sayed, M. A. (2005). Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews, 105 (4), 1025–1102. doi: https://doi.org/10.1021/cr030063a
  2. Shukla, S. K., Parashar, G. K., Mishra, A. P., Misra, P., Yadav, B. C., Shukla, R. K. et. al. (2004). Nano-like magnesium oxide films and its significance in optical fiber humidity sensor. Sensors and Actuators B: Chemical, 98 (1), 5–11. doi: https://doi.org/10.1016/j.snb.2003.05.001
  3. Huang, L., Li, D.-Q., Lin, Y.-J., Wei, M., Evans, D. G., Duan, X. (2005). Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 99 (5), 986–993. doi: https://doi.org/10.1016/j.jinorgbio.2004.12.022
  4. Wang, B., Xiong, X., Ren, H., Huang, Z. (2017). Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation. RSC Advances, 7 (69), 43464–43473. doi: https://doi.org/10.1039/c7ra07553g
  5. Bhargava, A., Alarco, J. A., Mackinnon, I. D. R., Page, D., Ilyushechkin, A. (1998). Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8. Materials Letters, 34 (3-6), 133–142. doi: https://doi.org/10.1016/s0167-577x(97)00148-1
  6. Di, D.-R., He, Z.-Z., Sun, Z.-Q., Liu, J. (2012). A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 8 (8), 1233–1241. doi: https://doi.org/10.1016/j.nano.2012.02.010
  7. Jin, F., Al-Tabbaa, A. (2014). Characterisation of different commercial reactive magnesia. Advances in Cement Research, 26 (2), 101–113. doi: https://doi.org/10.1680/adcr.13.00004
  8. Hussein, A. A., Zohdy, K., Abdelkreem, M. (2017). Seawater Bittern a Precursor for Magnesium Chloride Separation: Discussion and Assessment of Case Studies. International Journal of Waste Resources, 07 (01). doi: https://doi.org/10.4172/2252-5211.1000267
  9. Mohamed, A. M. O., Maraqa, M., Al Handhaly, J. (2005). Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination, 182 (1-3), 411–433. doi: https://doi.org/10.1016/j.desal.2005.02.035
  10. Dong, H., Unluer, C., Yang, E.-H., Al-Tabbaa, A. (2018). Recovery of reactive MgO from reject brine via the addition of NaOH. Desalination, 429, 88–95. doi: https://doi.org/10.1016/j.desal.2017.12.021
  11. Dong, H., Unluer, C., Yang, E.-H., Al-Tabbaa, A. (2017). Synthesis of reactive MgO from reject brine via the addition of NH4OH. Hydrometallurgy, 169, 165–172. doi: https://doi.org/10.1016/j.hydromet.2017.01.010
  12. Karidakis, T., Agatzini-Leonardou, S., Neou-Syngouna, P. (2005). Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy, 76 (1-2), 105–114. doi: https://doi.org/10.1016/j.hydromet.2004.09.007
  13. Khorsand Zak, A., Majid, W. H. abd., Wang, H. Z., Yousefi, R., Moradi Golsheikh, A., Ren, Z. F. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrasonics Sonochemistry, 20 (1), 395–400. doi: https://doi.org/10.1016/j.ultsonch.2012.07.001
  14. Yeh, M.-S., Yang, Y.-S., Lee, Y.-P., Lee, H.-F., Yeh, Y.-H., Yeh, C.-S. (1999). Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol. The Journal of Physical Chemistry B, 103 (33), 6851–6857. doi: https://doi.org/10.1021/jp984163+
  15. Kim, Y. H., Lee, D. K., Jo, B. G., Jeong, J. H., Kang, Y. S. (2006). Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284-285, 364–368. doi: https://doi.org/10.1016/j.colsurfa.2005.10.067
  16. Ponce, A. A., Klabunde, K. J. (2005). Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. Journal of Molecular Catalysis A: Chemical, 225 (1), 1–6. doi: https://doi.org/10.1016/j.molcata.2004.08.019
  17. Suslick, K. S. (1989). The Chemical Effects of Ultrasound. Scientific American, 260 (2), 80–86. doi: https://doi.org/10.1038/scientificamerican0289-80
  18. Doktycz, S., Suslick, K. (1990). Interparticle collisions driven by ultrasound. Science, 247 (4946), 1067–1069. doi: https://doi.org/10.1126/science.2309118
  19. Yunita, F. E., Natasha, N. C., Sulistiyono, E., Rhamdani, A. R., Hadinata, A., Yustanti, E. (2020). Time and Amplitude Effect on Nano Magnesium Oxide Synthesis from Bittern using Sonochemical Process. IOP Conference Series: Materials Science and Engineering, 858, 012045. doi: https://doi.org/10.1088/1757-899x/858/1/012045
  20. Tadros, T. F. (2005). Applied Surfactants: Principles and Applications. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA. doi: https://doi.org/10.1002/3527604812
  21. Dung Dang, T. M., Tuyet Le, T. T., Fribourg-Blanc, E., Dang, M. C. (2012). Influence of surfactant on the preparation of silver nanoparticles by polyol method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3 (3), 035004. doi: https://doi.org/10.1088/2043-6262/3/3/035004
  22. Loosli, F., Stoll, S. (2017). Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles. Environmental Science: Nano, 4 (1), 203–211. doi: https://doi.org/10.1039/c6en00339g
  23. Mehta, S. K., Kumar, S., Chaudhary, S., Bhasin, K. K. (2009). Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles. Nanoscale Research Letters, 4 (10), 1197–1208. doi: https://doi.org/10.1007/s11671-009-9377-8
  24. Saleh, B., Ezz El-Deen, A., Ahmed, S. M. (2011). Effect of liquid viscosity on cavitation damage based on analysis of erosion particles. JES. Journal of Engineering Sciences, 39 (2), 327–336. doi: https://doi.org/10.21608/jesaun.2011.127548
  25. Hielscher, T. (2005). Ultrasonic Production of Nano-Size Dispersions and Emulsions. Eur Nano Syst. Available at: https://arxiv.org/ftp/arxiv/papers/0708/0708.1831.pdf
  26. Liu, X.-M., Liu, X.-H., He, J., Hou, Y.-F., Lu, J., Ni, X.-W. (2010). Cavitation Bubble Dynamics in Liquids of Different Viscosity. 2010 Symposium on Photonics and Optoelectronics. doi: https://doi.org/10.1109/sopo.2010.5504305
  27. Greenwood, R., Kendall, K. (1999). Selection of Suitable Dispersants for Aqueous Suspensions of Zirconia and Titania Powders using Acoustophoresis. Journal of the European Ceramic Society, 19 (4), 479–488. doi: https://doi.org/10.1016/s0955-2219(98)00208-8

Downloads

Published

2021-06-25

How to Cite

Yunita, F. E., Sulistiyono, E., Natasha, N. C., Rhamdani, A. R., Firdiyono, F., Lalasari, L. H., Arini, T., Widyaningrum, E. S., & Yustanti, E. (2021). Investigation of surfactant effect during synthesis of magnesium oxide nanoparticles from bittern using ultrasonic destruction process. Eastern-European Journal of Enterprise Technologies, 3(5 (111), 6–12. https://doi.org/10.15587/1729-4061.2021.229908

Issue

Section

Applied physics