Information processing psychodiagnostic system: designing and implementation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.230042

Keywords:

Internet of Things, microcontroller, WiFi module, GSM module, information processing system, psychodiagnostic research, fuzzy sets

Abstract

The reasons for the creation of a modern psychodiagnostic system are considered. The design and implementation of an information processing system using the structure of the reference model of the Internet of Things is proposed. The existing psychodiagnostic tools and a number of disadvantages are described. In the process of developing the system design, requirements were formed: three-dimensional representation of signals, remote control of the diagnostic process, data collection, transmission and storage on a remote server, processing of results, expert assessment. The main two tasks of the study are formed. The structure of an information processing system containing four blocks interacting with each other is presented. The principle of operation of the system provides for the transfer of data for testing and saving the results on a cloud server using WiFi or GPRS connection. The Thingspeak cloud service used provides guaranteed access to research data "anytime and from anywhere in the world." Data exchange occurs every 15 seconds when using the free version and with a cycle of up to 1 second when using the cloud on a commercial basis. The models of LED-cube, LED-ball, LED panels diagnosed using addressable digital RGB LEDs with built-in WS2812B microcontrollers (PRC) have been developed. A method for assessing the influence of various types of load on the functional state of a person is proposed. Scenarios of data processing for the formation of a subject's profile in the case of unclear classes are considered. The importance of developing such a system lies in the possibility of using various types of communication for data transmission and the ability to adapt it to non-standard research requirements

Author Biographies

Valentine Lazurik, V. N. Karazin Kharkiv National University

Doctor of Physical and Mathematical Sciences, Professor

Department of Systems and Technologies Modeling

Nicolay Styervoyedov, V. N. Karazin Kharkiv National University

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Electronics and Control Systems

Natalia Varlamova, V. N. Karazin Kharkiv National University

Lecturer

Department of Electronics and Control Systems

References

  1. Balin, V. D., Gayda, V. K., Gerbachevskiy, V. K. et. al. (2003). Praktikum po obschey, eksperimental'noy i prikladnoy psihologii. Sanktet-Peterburg: Piter, 560.
  2. Kalnysh, V. V., Yena, A. I. (2001). Pryntsypy profesiynoho psykhofiziolohichnoho vidboru. Hihiena pratsi, 32, 131–144.
  3. Hussein, A. H. (2019). Internet of Things (IOT): Research Challenges and Future Applications. International Journal of Advanced Computer Science and Applications, 10 (6). doi: https://doi.org/10.14569/ijacsa.2019.0100611
  4. Wortmann, F., Flüchter, K. (2015). Internet of Things. Business & Information Systems Engineering, 57 (3), 221–224. doi: https://doi.org/10.1007/s12599-015-0383-3
  5. Remesh, A., Muralidharan, D., Raj, N., Gopika, J., Binu, P. K. (2020). Intrusion Detection System for IoT Devices. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). doi: https://doi.org/10.1109/icesc48915.2020.9155999
  6. Liu, H., Ning, H., Mu, Q., Zheng, Y., Zeng, J., Yang, L. T. et. al. (2019). A review of the smart world. Future Generation Computer Systems, 96, 678–691. doi: https://doi.org/10.1016/j.future.2017.09.010
  7. Podder, A. K., Bukhari, A. A., Islam, S., Mia, S., Mohammed, M. A., Kumar, N. M. et. al. (2021). IoT based smart agrotech system for verification of Urban farming parameters. Microprocessors and Microsystems, 82, 104025. doi: https://doi.org/10.1016/j.micpro.2021.104025
  8. Rozhkovskyi, H. V. (2013). Pat. No. 90435 UA. Systema dlia psykhokorektsiyi. No. u201315401; declareted: 30.12.2013; published: 26.05.2014, Bul. No. 10. Available at: https://uapatents.com/12-90435-sistema-dlya-psikhokorekci.html
  9. Apparatno-programmniy psihodiagnosticheskiy kompleks MUL'TIPSIHOMETR. Nauchno-proizvodstvenniy tsentr «DIP». Available at: http://www.multipsychometr.ru/izdel/mpm/
  10. Karpenko, М. Р., Karpenko, D. S., Burdakov, M. V. (2000). Pat. No. 2163731 RU. Abstract of invention. No. 2000120464/28; declareted: 04.08.2000; published: 27.02.2001. Available at: https://patentimages.storage.googleapis.com/2c/21/35/421ede05b9527a/RU2163731C1.pdf
  11. Rozhkovskyi, H. V. (2013). Pat. No. 109206 UA. Systema psykhokorektsiyi. No. a201315398; declareted: 30.12.2013; published: 27.07.2015, Bul. No. 14. Available at: https://uapatents.com/11-109206-sistema-psikhokorekci.html
  12. Malhazov, A. R., Harchenko, V. P. (2008). Diagnosticheskiy issledovatel'skiy kompleks dlya provedeniya professional'nogo otbora kadrov IK 01.0. Vynakhidnyk i ratsionalizator, 5 (78), 6–11. Available at: https://vir.uan.ua/archives/2008/2008-5s.pdf
  13. Ustroystvo psihofiziologicheskogo testirovaniya UPFT-1/30 «Psihofiziolog». Meditsinskoe oborudovanie dlya diagnostiki, neyrofiziologii i reabilitatsii. Available at: http://medicom-mtd.com/htm/Products/psychophisiolog.html
  14. Zlepko, S. M., Pavlov, S. V., Tymchyk, S. V., Navrotska, K. S. (2014). Pat. No. 99286 UA. Avtomatyzovana informatsiyna systema dlia doslidzhennia kohnityvnykh funktsiy liudyny. No. u201413764; declareted: 22.12.2014; published: 25.05.2015, Bul. No. 10. Available at: https://uapatents.com/5-99286-avtomatizovana-informacijjna-sistema-dlya-doslidzhennya-kognitivnikh-funkcijj-lyudini.html
  15. Recommendation Y.4000/Y.2060 (06/12). Available at: https://www.itu.int/rec/T-REC-Y.2060-201206-I
  16. Varlamova, N., Lazurik, V., Styervoyedov, N. (2019). Model and hardware-software implementation of information processing system for psychophysical and psychophysiological researches. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 44, 16–22. doi: https://doi.org/10.26565/2304-6201-2019-44-02
  17. Lazurik, V. Т., Styervoyedov, M. G., Varlamova, N. V. (2020). Information Processing System for Psychophysical Research with Two- and Three-dimensional Presentation of Test Signals. Control Systems and Computers, 4 (288), 66–75. doi: https://doi.org/10.15407/csc.2020.04.066
  18. Muthmainnah binti Mohd Noor, N., Afiq Afifi bin Mohd Zafie, M. (2021). Smart Gate Using Android Applications. Journal of Physics: Conference Series, 1755 (1), 012003. doi: https://doi.org/10.1088/1742-6596/1755/1/012003
  19. STM32 32-bit ARM Cortex MCUs. Tools & Software. Available at: https://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-mcus.html
  20. Bousselmi, S., Saoud, S., Cherif, A. (2020). Real-Time Implementation of an Optimized Speech Compression System in STM32F4 Discovery Board. Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), 37–48. doi: https://doi.org/10.1007/978-3-030-21009-0_4
  21. Marciniak, T., Podbucki, K., Suder, J., Dąbrowski, A. (2020). Analysis of Digital Filtering with the Use of STM32 Family Microcontrollers. Advanced, Contemporary Control, 287–295. doi: https://doi.org/10.1007/978-3-030-50936-1_25
  22. Singh, K., Kumar, R. (2021). Design of a Low-Cost Sensor-Based IOT System for Smart Irrigation. Applications in Ubiquitous Computing, 59–79. doi: https://doi.org/10.1007/978-3-030-35280-6_4
  23. Prayogo, S. S., Mukhlis, Y., Yakti, B. K. (2019). The Use and Performance of MQTT and CoAP as Internet of Things Application Protocol using NodeMCU ESP8266. 2019 Fourth International Conference on Informatics and Computing (ICIC). doi: https://doi.org/10.1109/icic47613.2019.8985850
  24. Singh, U., Ansari, M. A. (2019). Smart Home Automation System Using Internet of Things. 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC). doi: https://doi.org/10.1109/peeic47157.2019.8976842
  25. Liang, Y., Lu, W., Guo, P., Zhou, Z., Zhang, T. (2018). Remote Wi-Fi Smart Switch Based on Cloud Platform. Proceedings of the International Symposium on Big Data and Artificial Intelligence. doi: https://doi.org/10.1145/3305275.3305325
  26. Lita, I., Visan, D. A., Mazare, A. G., Ionescu, L. M., Lita, A. I. (2020). Automation Module for Precision Irrigation Systems. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). doi: https://doi.org/10.1109/siitme50350.2020.9292300
  27. Munawir, Ihsan, A., Mutia, E. (2019). Wi-Fi and GSM Based Motion Detection in Smart Home Security System. IOP Conference Series: Materials Science and Engineering, 536, 012143. doi: https://doi.org/10.1088/1757-899x/536/1/012143
  28. ThingSpeak. Available at: https://thingspeak.com/
  29. Viegas, V., Pereira, J. M. D., Girão, P., Postolache, O. (2021). Study of latencies in ThingSpeak. Advances in Science, Technology and Engineering Systems Journal, 6 (1), 342–348. doi: https://doi.org/10.25046/aj060139
  30. Penchalaiah, N., Nelson Emmanuel, J., Suraj Kamal, S., Lakshmi Narayana, C. V. (2020). IoT Based Smart Farming Using Thingspeak and MATLAB. ICCCE 2020, 1273–1295. doi: https://doi.org/10.1007/978-981-15-7961-5_117
  31. Li, M. (2019). Design of Multi-network Data Acquisition System Based on Cloud Platform. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). doi: https://doi.org/10.1109/icvris.2019.00033
  32. Nguyen-Ly, T. T., Tran, L., Huynh, T. V. (2019). Low-cost, high-efficiency hardware implementation of smart traffic light system. 2019 International Symposium on Electrical and Electronics Engineering (ISEE). doi: https://doi.org/10.1109/isee2.2019.8921146
  33. Saikivska, L. (2015). Development and use of information technology for evaluating an operator’s visual profile functional state. Technology audit and production reserves, 4 (2 (24)), 45–49. doi: https://doi.org/10.15587/2312-8372.2015.47914
  34. Chernyavskaya, E. V. (2011). Fuzzy logic to assess schoolchildren professional suitability. Vestnik NGU. Seriya: Pedagogika, 12 (2), 66–71. Available at: https://nsu.ru/xmlui/bitstream/handle/nsu/3136/06.pdf?sequence=1&isAllowed=y
  35. Burilich, I. N., Uvarova, A. G., Filist, S. A. (2006). Avtomatizirovannaya sistema diagnostiki shizofrenii na osnove nechetkoy logiki prinyatiya resheniy. Vestnik novyh meditsinskih tehnologiy, 13 (2), 46-49. Available at: https://cyberleninka.ru/article/n/avtomatizirovannaya-sistema-diagnostiki-shizofrenii-na-osnove-nechetkoy-logiki-prinyatiya-resheniy
  36. D'yakonov, V. P. (2011). MATLAB i SIMULINK dlya radioinzhenerov. Moscow: «DMK-Press», 976.

Downloads

Published

2021-04-30

How to Cite

Lazurik, V., Styervoyedov, N., & Varlamova, N. (2021). Information processing psychodiagnostic system: designing and implementation. Eastern-European Journal of Enterprise Technologies, 2(9 (110), 45–54. https://doi.org/10.15587/1729-4061.2021.230042

Issue

Section

Information and controlling system