Development of the design and determination of mode characteristics of block cryoconcentrators for pomegranate juice

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.230182

Keywords:

pomegranate juice, cryoconcentration, kinetics of the process, block freezing, separation, evaporator, concentration

Abstract

The designs of cryoconcentrators of block type BV-2 and BL-20 have been developed. The influence of design and operating parameters on the kinetics of freezing of pomegranate juice was investigated.

A decrease in the operating temperature of the refrigeration unit contributes to a more intensive growth of the ice block. When the temperature of the coolant decreases by 1.2 times, the productivity of the BV-2 unit increases by 27 %, and of the BL-20 unit by 12 %. For BL-20, an increase in the initial concentration by 3 times leads to a decrease in productivity by 2.5...1.5 times.

The influence of the temperature of the coolant and the initial concentration of the juice on the rate of concentration change has been determined. At low initial concentrations of solutions (10...15 %), a sharp increase in concentration is observed at the final stage of freezing. The dry matter content of the juice is increased by 16 % at high concentrations, only 4 %.

The kinetics of the ice block separation process has been studied. At the first stage (duration 10...15 minutes), the concentration of effluents is 2...3 % higher than the concentration of the solution. On the second, increases by 6...10 %. In the third stage, there is a monotonous decrease in effluent concentration (2.5 % / hour).

The results of experimental modeling are generalized. The obtained equation in similarity numbers allows calculating the mass transfer coefficients with an error of no more than 20 %.

The developed designs of the BL-20 and BV-2 cryoconcentrators are semi-industrial units. With block cryoconcentration, a concentration of pomegranate juice of 47° Brix was achieved, which is higher than in traditional devices. The results obtained can be applied for further development and creation of industrial plants with optimal improved product parameters.

Author Biographies

Oleg Burdo, Odessa National Academy of Food Technologies

Doctor of Technical Sciences, Professor

Department of Process, Equipment and Energy Management

Igor Bezbakh, Odessa National Academy of Food Technologies

Doctor of Technical Sciences, Associate Professor

Department of Process, Equipment and Energy Management

Aleksandr Zykov, Odessa National Academy of Food Technologies

Doctor of Technical Sciences

Department of Process, Equipment and Energy Management

Yana Fatieieva, Odessa National Academy of Food Technologies

Postgraduate Student

Department of Process, Equipment and Energy Management

Davar Rostami Pour, Firm «Davarrostamipour»

Director

Petr Osadchuk, Odessa State Agrarian University

PhD, Associate Professor

Department of Agricultural Engineering

Igor Mazurenko, Hunan University of Humanities, Science and Technology

Doctor of Technical Sciences, Professor

Shao Zhengzheng, Henan Institute of Science and Technology

Postgraduate Student

School of Food Science

Lyudmila Phylipova, Research and Planning Institute of Standardisation and Technology of Ecosafe and Organic Products

Director

References

  1. Burdo, O. H., Kovalenko, O. O., Reminna, L. P. (2008). Pat. No. 34280 UA. Sposib otrymannia kontsentrovanykh ridkykh produktiv shliakhom vymorozhuvannia. No. u200801496; declareted: 05.02.2008; published: 11.08.2008, Bul. No. 15. Available at: https://uapatents.com/3-34280-sposib-otrimannya-koncentrovanikh-ridkikh-produktiv-shlyakhom-vimorozhuvannya.html
  2. Müller, M., Sekoulov, I. (1992). Waste Water Reuse by Freeze Concentration with a Falling Film Reactor. Water Science and Technology, 26 (7-8), 1475–1482. doi: https://doi.org/10.2166/wst.1992.0591
  3. Miyawaki, O. (2001). Analysis and Control of Ice Crystal Structure in Frozen Food and Their Application to Food Processing. Food Science and Technology Research, 7 (1), 1–7. doi: https://doi.org/10.3136/fstr.7.1
  4. Zambrano, A., Ruiz, Y., Hernández, E., Raventós, M., Moreno, F. L. (2018). Freeze desalination by the integration of falling film and block freeze-concentration techniques. Desalination, 436, 56–62. doi: https://doi.org/10.1016/j.desal.2018.02.015
  5. Qin, F. G. F., Ding, Z., Yuan, J., Jiang, R., Huang, S., Yin, H., Shao, Y. (2019). Visualization data on concentrating apple juice with a trinitarian crystallization suspension freeze concentrator. Data in Brief, 25, 104155. doi: https://doi.org/10.1016/j.dib.2019.104155
  6. Ding, Z., Qin, F. G. F., Yuan, J., Huang, S., Jiang, R., Shao, Y. (2019). Concentration of apple juice with an intelligent freeze concentrator. Journal of Food Engineering, 256, 61–72. doi: https://doi.org/10.1016/j.jfoodeng.2019.03.018
  7. Sánchez, J., Ruiz, Y., Raventós, M., Auleda, J. M., Hernández, E. (2010). Progressive freeze concentration of orange juice in a pilot plant falling film. Innovative Food Science & Emerging Technologies, 11 (4), 644–651. doi: https://doi.org/10.1016/j.ifset.2010.06.006
  8. Petzold, G., Niranjan, K., Aguilera, J. M. (2013). Vacuum-assisted freeze concentration of sucrose solutions. Journal of Food Engineering, 115 (3), 357–361. doi: https://doi.org/10.1016/j.jfoodeng.2012.10.048
  9. Bayindirli, L., Özilgen, M., Ungan, S. (1993). Mathematical analysis of freeze concentration of apple juice. Journal of Food Engineering, 19 (1), 95–107. doi: https://doi.org/10.1016/0260-8774(93)90063-p
  10. Nonthanum, P., Tansakul, A. (2008). Freeze concentration of lime juice. Maejo International Journal of Science and Technology, 1, 27–37. Available at: http://www.mijst.mju.ac.th/vol2/s27-37.pdf
  11. Vuist, J. E., Linssen, R., Boom, R. M., Schutyser, M. A. I. (2021). Modelling ice growth and inclusion behaviour of sucrose and proteins during progressive freeze concentration. Journal of Food Engineering, 303, 110592. doi: https://doi.org/10.1016/j.jfoodeng.2021.110592
  12. Firuzi, M. R., Niakousari, M., Eskandari, M. H., Keramat, M., Gahruie, H. H., Mousavi Khaneghah, A. (2019). Incorporation of pomegranate juice concentrate and pomegranate rind powder extract to improve the oxidative stability of frankfurter during refrigerated storage. LWT, 102, 237–245. doi: https://doi.org/10.1016/j.lwt.2018.12.048
  13. Hegazi, N. M., El-Shamy, S., Fahmy, H., Farag, M. A. (2021). Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. Journal of Food Composition and Analysis, 97, 103773. doi: https://doi.org/10.1016/j.jfca.2020.103773
  14. Azeredo, H. M. C., Morrugares-Carmona, R., Wellner, N., Cross, K., Bajka, B., Waldron, K. W. (2016). Development of pectin films with pomegranate juice and citric acid. Food Chemistry, 198, 101–106. doi: https://doi.org/10.1016/j.foodchem.2015.10.117
  15. Dhumal, S. S., Karale, A. R., More, T. A., Nimbalkar, C. A., Chavan, U. D., Jadhav, S. B. (2015). Preparation of pomegranate juice concentrate by various heating methods and appraisal of its physicochemical characteristics. Acta Horticulturae, 1089, 473–484. doi: https://doi.org/10.17660/actahortic.2015.1089.65
  16. Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O. F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241–246. doi: https://doi.org/10.1016/j.ifset.2016.12.014
  17. Maskan, M. (2006). Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: colour degradation and kinetics. Journal of Food Engineering, 72 (3), 218–224. doi: https://doi.org/10.1016/j.jfoodeng.2004.11.012
  18. Putnik, P., Kresoja, Ž., Bosiljkov, T., Režek Jambrak, A., Barba, F. J., Lorenzo, J. M. et. al. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry, 279, 150–161. doi: https://doi.org/10.1016/j.foodchem.2018.11.131
  19. Petzold, G., Moreno, J., Lastra, P., Rojas, K., Orellana, P. (2015). Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innovative Food Science & Emerging Technologies, 30, 192–197. doi: https://doi.org/10.1016/j.ifset.2015.03.007
  20. Petzold, G., Orellana, P., Moreno, J., Cerda, E., Parra, P. (2016). Vacuum-assisted block freeze concentration applied to wine. Innovative Food Science & Emerging Technologies, 36, 330–335. doi: https://doi.org/10.1016/j.ifset.2016.07.019
  21. Khajehei, F., Niakousari, M., Eskandari, M. H., Sarshar, M. (2015). Production of Pomegranate Juice Concentrate by Complete Block Cryoconcentration Process. Journal of Food Process Engineering, 38 (5), 488–498. doi: https://doi.org/10.1111/jfpe.12179
  22. Ovsyannicov, V. Yu., Kondrateva, I. I., Bostynets, N. I., Denezhnaja, A. N. (2015). Batch-wise process of cherry juice freeze concentration. Vestnik mezhdunarodnoy akademii holoda, 1, 4–8. Available at: https://cyberleninka.ru/article/n/issledovanie-protsessa-tsiklicheskogo-kontsentrirovaniya-vishnevogo-soka-vymorazhivaniem

Downloads

Published

2021-04-30

How to Cite

Burdo, O., Bezbakh, I., Zykov, A., Fatieieva, Y., Pour, D. R., Osadchuk, P., Mazurenko, I., Zhengzheng, S., & Phylipova, L. (2021). Development of the design and determination of mode characteristics of block cryoconcentrators for pomegranate juice . Eastern-European Journal of Enterprise Technologies, 2(11 (110), 6–14. https://doi.org/10.15587/1729-4061.2021.230182

Issue

Section

Technology and Equipment of Food Production