Optimization of the HACCP safety control system for collagen hydrolysate production by implementing the FMEA model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.230318

Keywords:

collagen hydrolysate safety, HACCP, CCP, critical limit, FMEA, enzymatic hydrolysis

Abstract

This study was carried out to determine the impact of the HACCP control system on the safety of the final products of collagen hydrolysate production. The object of the study was equine connective tissue. Using the FMEA model, established by a three-factor assessment of the risk priority number (RPN), critical control points (CCP) in the processes of hydrolysis, inactivation of the enzyme preparation, drying and storage were identified. For two CCP, measures for continuous monitoring were identified, and critical limits were developed. For CCT 1, the calculation of optimal fermentation processes using a mathematical model for the hydrolysis of raw materials is given. The optimal values of the Neutrase enzyme, providing a maximum content of water-soluble proteins of 55.0 mg/cm3, were determined: T=37 °C, dosage 5 Pa/g, t=210 min.

For CCP 2, to avoid protein denaturation during hydrolysis, a critical limit was developed by determining the heat inactivation point and optimum temperature. Experimental analyses show that the inactivation point of the Neutrase enzyme, estimated by the rate of FTN accumulation, which has 20 % at 60 °C, is reached at the 11th minute.

As a result of the study, the effect of enzyme preparations on the safety of collagen hydrolysate was also determined. The result confirms that the Neutrase enzyme preparation had a positive effect on all safety indicators compared to the Trypsin enzyme. The optimal parameters for reducing microbiological indicators, pesticides, antibiotic and toxic metals are: T=40 °C, duration 210 min, dosage of the Neutrase enzyme 5 units/Pa.

The results can be used in collagen hydrolysate production to better ensure the quality and safety of the final product

Author Biographies

Assemay Kazhymurat, Almaty Technological University

Master of Technical Science

Department of Food Safety and Quality

Raushangul Uazhanova, Almaty Technological University

Doctor of Technical Sciences, Professor

Department of Food Safety and Quality

Dinara Tlevlesova, Almaty Technological University

PhD

Department of Food Processing Machines and Apparatuses

Nurshash Zhexenbay, Almaty Technological University

PhD, Associate Professor

Department of Food technology

Ulbala Tungyshbayeva, Almaty Technological University

PhD

Department of Food Safety and Quality

Saverio Mannino, Almaty Technological University

Doctor of Technical Sciences, Professor

Department of Food Safety and Quality

References

  1. Tian, J. (Jingxin), Bryksa, B. C., Yada, R. Y. (2016). Feeding the world into the future – food and nutrition security: the role of food science and technology. Frontiers in Life Science, 9 (3), 155–166. doi: http://doi.org/10.1080/21553769.2016.1174958
  2. Ibraimova, S., Uazhanova, R., Mardar, M., Serikbaeva, A., Tkachenko, N., & Zhygunov, D. (2020). Development of recipe composition of bread with the inclusion of juniper using mathematical modeling and assessment of its quality. Eastern-European Journal of Enterprise Technologies, 6 (11 (108)), 6–16. doi: http://doi.org/10.15587/1729-4061.2020.219020
  3. Woodhead Publishing Series in Food Science, Technology and Nutrition (2013). Improving the Safety and Quality of Nuts, 119–147. doi: http://doi.org/10.1016/b978-0-85709-266-3.50019-4
  4. Food Quality and Safety Systems: A Training Manual On Food Hygiene and the Hazard Analysis and Critical Control Point (HACCP) System (2009). Food and Agriculture Organization of the United Nations, 243.
  5. Weston, A. R., Rogers, R. W., Althen, T. G. (2002). Review: The Role of Collagen in Meat Tenderness. The Professional Animal Scientist, 18 (2), 107–111. doi: http://doi.org/10.15232/s1080-7446(15)31497-2
  6. Stenzel, K. H., Miyata, T., Rubin, A. L. (1974). Collagen as a Biomaterial. Annual Review of Biophysics and Bioengineering, 3 (1), 231–253. doi: http://doi.org/10.1146/annurev.bb.03.060174.001311
  7. Dzhey, D. M., Lesner, M. Dzh., Golden, D. A. (2012). Modern Food Microbiology. Moscow: Binom. Laboratoriya znaniy, 886.
  8. Khochenkov, A. A., Dzhumkova, M. V. (2018). Osobennosti primeneniya sistemy HACCP v promyshlennom svinovodstve. Nauchnoe obespechenie zhivotnovodstva Sibiri. Krasnoyarsk, 341–346.
  9. GOST R 51705.1-2001. Sistemy kachestva. Upravlenie kachestvom pischevykh produktov na osnove printsipov KHASSP. Obschie trebovaniya.
  10. Antipova, L. V., Boltykhov, Yu. V., Vtorushina, I. V., Glotova, I. A., Pryanishnikov, V. V. (2008). Razrabotka pischevykh dobavok dlya zaschity biosistem s ispolzovaniem kompyuternogo modelirovaniya nanoobektov. Khranenie i pererabotka selkhozsyrya, 11, 44–46.
  11. Hashim, P., Sofberi, M., Ridzwan, M., Bakar, J., Mat Hashim, D. (2015). Collagen in food and beverage industries. International Food Research Journal, 22 (1), 1–8.
  12. Kadler, K. E., Baldock, C., Bella, J., Boot-Handford, R. P. (2007). Collagens at a glance. Journal of Cell Science, 120 (12), 1955–1958. doi:10.1242/jcs.03453
  13. Baumann, L. (2007). Skin ageing and its treatment. The Journal of Pathology, 211 (2), 241–251. doi: http://doi.org/10.1002/path.2098
  14. Hays, N. P., Kim, H., Wells, A. M., Kajkenova, O., Evans, W. J. (2009). Effects of Whey and Fortified Collagen Hydrolysate Protein Supplements on Nitrogen Balance and Body Composition in Older Women. Journal of the American Dietetic Association, 109 (6), 1082–1087. doi: http://doi.org/10.1016/j.jada.2009.03.003
  15. Jhawar, N., Wang, J. V., Saedi, N. (2019). Oral collagen supplementation for skin aging: A fad or the future? Journal of Cosmetic Dermatology, 19 (4), 910–912. doi: http://doi.org/10.1111/jocd.13096
  16. Najafian, L., Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33 (1), 178–185. doi: http://doi.org/10.1016/j.peptides.2011.11.013
  17. Wang, J., Pei, X., Liu, H., Zhou, D. (2018). Extraction and characterization of acid-soluble and pepsin-soluble collagen from skin of loach (Misgurnus anguillicaudatus). International Journal of Biological Macromolecules, 106, 544–550. doi: http://doi.org/10.1016/j.ijbiomac.2017.08.046
  18. Shсhekotova, A. V., Khamagaeva, I. S., Tsyrenov, V. Z., Darbakova, N. V. et. al. (2019). Biotechnological processing procedures of collagen-containing raw materials for creation of functional foods. Proceedings of universities applied chemistry and biotechnology, 9 (2), 250–259. doi: http://doi.org/10.21285/2227-2925-2019-9-2-250-259
  19. Rebezov, M. B., Lukin, A. A., Naumova, N. L., Zinina, O. V., Pirozhinskiy, S. G. (2011). Usage of collagenous hydrolyzate in producing meat bread. Vestnik TGEU, 3. Available at: https://cyberleninka.ru/article/n/ispolzovanie-kollagenovogo-gidrolizata-v-proizvodstve-myasnogo-hleba Last accessed: 01.04.2021
  20. Uchebnoe posobie po sisteme analiza opasnostey i kriticheskikh kontrolnykh tochek upravleniya (NASSR) (2012). Bishkek, 62. Available at: https://studylib.ru/doc/159976/principy-nassr---associaciya-plodoovoshhnyh-predpriyatij Last accessed: 05.12.2017.
  21. Shutova, O. A., Manukyan, A. F. (2015). Problemy Vnedreniya Printsipov KHASSP Na Predpriyatiyakh Pischevoy Promyshlennosti. Simvol Nauki, 11, 67–69.
  22. Hechelmann, H. (1980). Allgemeines uber Hefenund Schimmelpilze. Band 1. Kulbaher Reihe, 13–26.
  23. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine) (2011). EFSA Journal, 9 (10), 2351. doi: http://doi.org/10.2903/j.efsa.2011.2351
  24. Ghajar, C. M., George, S. C., Putnam, A. (2008). Matrix Metalloproteinase Control of Capillary Morphogenesis. Critical Reviews™ in Eukaryotic Gene Expression, 18 (3), 251–278. doi: http://doi.org/10.1615/critreveukargeneexpr.v18.i3.30
  25. Abdollahi, M., Rezaei, M., Jafarpour, A., Undeland, I. (2018). Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chemistry, 242, 568–578. doi: http://doi.org/10.1016/j.foodchem.2017.09.045
  26. Nagai, T., Suzuki, N. (2000). Isolation of collagen from fish waste material – skin, bone and fins. Food Chemistry, 68 (3), 277–281. doi: http://doi.org/10.1016/s0308-8146(99)00188-0
  27. Antipova, L. V., Storublevtsev, S. A. (2009). Pat. No. 2409216 RU., Sposob polucheniya funktsionalnogo kollagenovogo gidrolizata. MPK: A23J 1/10. No. 2009118048/13; declareted: 12.05.2009; published: 12.05.2009.
  28. Marienne, A. (2013). Anandappa Quantifying haccp training durability. Animal and Food Sciences, 36.
  29. Vijayakumar, R. V., Gangadharappa, H V., Shashikanth, D. (2015). Risk assessment by using failure mode effective analysis (FMEA) tool: an overview. World Journal of Pharmaceutical Research, 4 (3), 567–574.
  30. M-04-41-2005: Metodika vypolneniya izmereniy massovoy doli svobodnykh form vodorastvorimykh vitaminov v probakh premiksov, vitaminnykh dobavok, kontsentratov i smesey metodom kapillyarnogo elektroforeza s ispolzovaniem sistemy kapillyarnogo elektroforeza «Kapel-105». Saint Petersburg: OOO «Lyumeks», 36
  31. Fodor-Csorba, K. (1992). Chromatographic methods for the determination of pesticides in foods. Journal of Chromatography A, 624 (1-2), 353–367. doi: http://doi.org/10.1016/0021-9673(92)85688-p
  32. Capita, R., Prieto, M., Alonso-Calleja, C. (2004). Sampling Methods for Microbiological Analysis of Red Meat and Poultry Carcasses. Journal of Food Protection, 67 (6), 1303–1308. doi: http://doi.org/10.4315/0362-028x-67.6.1303
  33. Wagner, A. O., Markt, R., Mutschlechner, M., Lackner, N., Prem, E. M., Praeg, N., Illmer, P. (2019). Medium Preparation for the Cultivation of Microorganisms under Strictly Anaerobic/Anoxic Conditions. Journal of Visualized Experiments, 150. doi: http://doi.org/10.3791/60155
  34. ISO 21527-1:2008. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of yeasts and moulds. Part 1: Colony count technique in products with water activity greater than 0,95. doi: http://doi.org/10.3403/30151265
  35. Antipova, L. V., Glotova, I. A., Rogov, I. A. (2001). Metody issledovaniya myasa i myasnykh produktov. Moscow: Kolos, 376.
  36. FMEA Analiz vidov i posledstviy potentsialnykh otkazov (2008). Kraysler Korp., Ford Motor Kompani, Dzheneral Motors Korp.
  37. Kazhymurat, A., Uazhanova, R. U. (2017). Perspectives of application collagen in food industry. Prodovolstvennaya bezopasnost v kontekste novykh idey i resheniy. Semey: Gosudarstvenniy universitet imeni Shakarima, 1, 152–155.
  38. Matison, V. A., Dunchenko, N. I., Gorelov, A. S. (2003). Razrabotka metodiki otsenki biologicheskikh, khimicheskikh i fizicheskikh riskov sistemy bezopasnosti proizvodstva pischevykh produktov. Tekhnologii zhivykh sistem. Moscow, 57–59.
  39. Valentas, K. Dzh., Rotshteyn, E., Pol Singkh, R. (2004). Pischevaya inzheneriya. Saint Petersburg: Professiya, 485.
  40. Feiner, G. (2006). Meat products handbook. Practical science and technology. Boca Raton, Boston, New York, Washington: CRC Press, Woodhead Publ. doi: http://doi.org/10.1201/9781439824245
  41. Dikson, M., Uebb, E. (1982). Fermenty. Vol. 1. Moscow: Mir, 515.
  42. Nemtsev, S. V. (2006). Kompleksnaya tekhnologiya khitina i khitozana iz pantsirya rakoobraznykh. Moskva: Izdatelstvo «VNIRO», 107.
  43. Mashanova, N. S. (2010). Biotekhnologicheskie aspekty ispolzovaniya kollagensodeozhaschego syrya v proizvodstve myasnykh produktov. Almaty, 217.
  44. Babel, W. (1996). Gelatine – ein vielseitiges Biopolymer. Chemie in Unserer Zeit, 30 (2), 86–95. doi: http://doi.org/10.1002/ciuz.19960300205
  45. Rezyapkin, V. I., Slyshenkov, V. S., Zavodnik, I. B., Burd, V. N., Sushko, L. I., Romanchuk, E. I., Karaedova, L. M. (2009). Laboratorniy praktikum po biokhimii i biofizike. Available at: http://ebooks.grsu.by/lab_pr_bio/fermenty.htm

Downloads

Published

2021-04-30

How to Cite

Kazhymurat, A., Uazhanova, R., Tlevlesova, D. ., Zhexenbay, N., Tungyshbayeva, U., & Mannino, S. (2021). Optimization of the HACCP safety control system for collagen hydrolysate production by implementing the FMEA model. Eastern-European Journal of Enterprise Technologies, 2(11 (110), 50–60. https://doi.org/10.15587/1729-4061.2021.230318

Issue

Section

Technology and Equipment of Food Production