The method of monitoring of thermodynamic efficiency of heat pump

Authors

  • Александр Сергеевич Клепанда "Insolar-climate" Str. Klochkovskaya, 99-A, Kharkov, 61022, Ukraine https://orcid.org/0000-0003-0851-1350
  • Виктория Александровна Тарасова Institute of Problems of Mechanical Engineering. AN Podgorny National Academy of Sciences of Ukraine Str. Dmitry Pozharsky, 2/10, Kharkov, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-3252-7619
  • Юлия Викторовна Бережко Kharkov National University of Construction and Architecture Str. Sumskaya, 40, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-7819-304X

DOI:

https://doi.org/10.15587/1729-4061.2014.23086

Keywords:

heat pump, chiller, thermodynamic efficiency, conversion factor, exergy performance coefficient

Abstract

A technique for monitoring the heat pump, which allows for a limited amount of measured parameters exercise testing its thermodynamic efficiency in real time. Methodology includes three stages: the first stage - monitoring, involving only data logging and collection of information about the operation of the heat pump, the second stage - the processing of monitoring data, and the third stage - the analysis and diagnosis of the thermodynamic efficiency. The results of monitoring of the heat pump series Vicot VMN430L in the heating system of the administrative building is present. Monitoring system recorded the following parameters: temperature and humidity of the outside air temperature in the "direct" and "inverse" highways of the heating system, the power consumption of compressors , water flow in the condenser of the heat pump. Found that the model holds VMN430L low efficiency at low ambient temperatures that the current generation of chillers and heat pumps from other manufacturers is not so typical.

Author Biographies

Александр Сергеевич Клепанда, "Insolar-climate" Str. Klochkovskaya, 99-A, Kharkov, 61022

Candidate of Technical Sciences

Senior Researcher

Виктория Александровна Тарасова, Institute of Problems of Mechanical Engineering. AN Podgorny National Academy of Sciences of Ukraine Str. Dmitry Pozharsky, 2/10, Kharkov, Ukraine, 61046

Candidate of Technical Sciences

Department of modeling and identification of thermal processes

Юлия Викторовна Бережко, Kharkov National University of Construction and Architecture Str. Sumskaya, 40, Kharkov, Ukraine, 61002

Graduate student

Department of Heat, ventilation and the use of secondary thermal energy

References

  1. Желіба, Ю. О. Енергозбереження при виробництві та споживанні холоду [Текст] / Ю. О. Желіба // Холод. – 2004. – № 2. – С. 39–43.
  2. Бродянский, В. М. Доступная энергия земли и устойчивое развитие систем жизнеобеспечения. Часть 1. Эффективность искусственных систем [Текст] / В. М. Бродянский// Технические газы. – 2011. – № 2. – С. 48–65 .
  3. Бродянский, В. М. Доступная энергия земли и устойчивое развитие систем жизнеобеспечения. Часть 2. Ресурсы земли [Текст] / В. М. Бродянский// Технические газы. – 2011. – № 3 . – С. 48–62 .
  4. Grimmelius, H. T. On-line failure diagnosis for compression refrigeration plants [Теxt] / H. T. Grimmelius, J. K. Woud, G. Been.// Int. J.Refrigeration.– 1995. Vol. 18. – P. 31–41.
  5. Li, H. A Methodology for Diagnosing Multiple Simultaneous Faults in Vapor-Compression Air. Conditioners [Теxt] / H. Li, J.E. Braun // HVAC&R Research. – 2007. – Vol. 13. – P. 369–395.
  6. Rossi, T. M. A statistical rule-based fault detection and diagnostic method for vapor compression air conditioners [Теxt] / T. M. Rossi, J. E. Braun // HVAC&R Research. – 1997. – Vol. 3. – P. 19–37.
  7. Kim, Y. J. Development of Performance-Analysis Program for Vapor-Compression Cycle based on Thermodynamic Analysis [Теxt] / Y. J. Kim, I. S. Park // J Indust. Eng. Chem. – 2000. – Vol. 6 (6). – P. 385–394.
  8. Herbas, T. B. Steady-State Simulation of Vapor-Compression Heat Pump [Теxt] / T. B. Herbas, E. C. Berlinck, C. A. T. Uriu, R. P. Marques, J. A. R. Parise // Int. J. Ener.Res. – 1993. – Vol. 17. – P. 801–816.
  9. Dubiri, A. E. A Steady-state Computer Simulation Model for Air- to – air Heat pumps [Теxt] / A. E. Dubiri // ASHRAE Trans. – 1982. – Vol. 88(2). – P. 973–987.
  10. Gordon, J. M. Cool Thermodynamics. The Engineering and Physics of Predictive, Diagnostic and Optimization Methods for Cooling Systems [Теxt] / J. M. Gordon, K. C. Ng. – Cornwall. England: MPG Books Ltd, 2001. – 276 p.
  11. Gordon, J. M. Thermodynamic Modeling of Reciprocating Chillers [Теxt] / J. M. Gordon, K. S. Ng // J Appl.Phys. – 1994. – Vol. 75. – P. 2769–2779.
  12. Gordon, J. M. Centrifugal chillers: Thermodynamic modeling and diagnostics case study [Теxt] / J. M. Gordon, K. S. Ng, H. T. Chua // Int. J Refrig. – 1995. – Vol. 18(4). – P. 253–257.
  13. Ust, Y. Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion [Теxt] / Y. Ust, A. V. Akkaya, A. Safa// J Energy Inst, – 2011. – Vol. 84(2). – P. 66–72.
  14. Zheliba, J. O. (2004). Energy conservation in the production and consumption of cold. Cold, 2, 39–43.
  15. Brodyansky, V. M. (2011). Available energy of earth and sustainable development of the life support systems. Part 1. Efficiency of synthetic systems. Industrial Gases, 2, 48–65.
  16. Brodyansky, V. M. (2011). Available energy of earth and sustainable development of the life support systems. Part 2. Resources of the earth. Industrial Gases, 3, 48–62.
  17. Grimmelius, H. T., Woud, J. K., Been, G. (1995). On-line failure diagnosis for compression refrigeration plants. Int. J.Refrigeration 18, 31–41.
  18. Li, H., Braun, J. E. (2007). A Methodology for Diagnosing Multiple Simultaneous Faults in Vapor-Compression Air. Conditioners. HVAC&R Research 13, 369–395.
  19. Rossi, T. M., Braun, J. E. (1997). A statistical rule-based fault detection and diagnostic method for vapor compression air conditioners. HVAC & R Research 3, 19–37.
  20. Kim, Y. J., Park, I. S. (2000). Development of Performance-Analysis Program for Vapor-Compression Cycle based on Thermodynamic Analysis. Journal of Industrial and Engineering Chemistry, 6 (6), 385–394.
  21. Herbas, T. B., Berlinck, E. C., Uriu, C. A., Marques, R. P., Parise J. A. (1993). Steady-State Simulation of Vapor-Compression Heat Pump. International Journal of Energy Research, 17, 801–816.
  22. Dubiri, A. E. (1982). A Steady-state Computer Simulation Model for Air- to – air Heat pumps. ASHRAE Transactions, 88 (2), 973–987.
  23. Gordon, J. M., Ng, K. C. (2001). Cool Thermodynamics. The Engineering and Physics of Predictive, Diagnostic and Optimization Methods for Cooling Systems. MPG Books Ltd, 276.
  24. Gordon, J. M., Ng, K. S. (1994). Thermodynamic Modeling of Reciprocating Chillers. Journal Applied Physics, 75, 2769–779.
  25. Gordon, J. M., Ng, K. S., Chua, H. T. (1995). Centrifugal chillers: Thermodynamic modeling and diagnostics case study. International Journal of Refrigeration, 18(4), 253–257.
  26. Ust, Y, Akkaya, A. V., Safa, A. (2011). Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion. Journal of the Energy Institute, 84(2), 66–72.

Published

2014-04-18

How to Cite

Клепанда, А. С., Тарасова, В. А., & Бережко, Ю. В. (2014). The method of monitoring of thermodynamic efficiency of heat pump. Eastern-European Journal of Enterprise Technologies, 2(8(68), 3–8. https://doi.org/10.15587/1729-4061.2014.23086

Issue

Section

Energy-saving technologies and equipment