Review of existing control systems that are used on unmanned aerial vehicles

Authors

  • Анастасія Сергіївна Міщук National Technical University of Ukraine "Kiev Polytechnic Institute" 37 Prospect Peremogy, Kiev 03056, Ukraine, Ukraine https://orcid.org/0000-0002-6632-4396

DOI:

https://doi.org/10.15587/1729-4061.2014.23137

Keywords:

automatic control systems, machine learning, intelligent control systems

Abstract

The aim of the work is to systematize the information on automatic control systems that are used on unmanned aerial vehicles for the selection and further use of combined control methods in the new automatic control system that can withstand unknown external disturbances with guaranteed accuracy.

Adaptive, optimal and robust control systems are considered. Advantages and disadvantages of adaptive control systems with intelligent control, in particular, using the neural networks are investigated. The issues of eliminating drawbacks, inherent in this type of adaptive automatic control systems are considered. Hybrid control architecture is reviewed. The synthesis of optimal control systems is examined.

Advantages and disadvantages of using optimal control systems in conditions of uncertain external disturbances are given in the paper. Robust automatic control systems with robust adaptation algorithms are considered. Using the game theory in automatic control systems is studied.

Conclusions about the feasibility of using a set of adaptive, intelligent and robust control methods to create a control system with the guaranteed accuracy of observing the specified parameters in conditions of uncertain external perturbations are drawn.

Author Biography

Анастасія Сергіївна Міщук, National Technical University of Ukraine "Kiev Polytechnic Institute" 37 Prospect Peremogy, Kiev 03056, Ukraine

Postgraduate student

Department of Aircraft and Space Systems

References

  1. Небылов, А. В. Гарантирование точности управления [Текст] / А. В. Небылов – М.: Наука, 1998. – 304 с.
  2. Поляк, Б. Т. Робастная устойчивость и управляемость [Текст] / Б. Т. Поляк, П. С. Щербаков. – М.:”Наука”, 2002. – 303 с. 3.
  3. Фомин, В. Н. Адаптивное управление динамическими объектами [Текст] / А. Л. Фрадков, В. А. Якубович . – М.:”Наука”, 1981. - 558 с.
  4. Душин, С. Е. Теория автоматического управления [Текст] / С. Е. Душин, Н. С. Зотов, Д. X. Имаев, Н. Н. Кузьмин, В. Б. Яковлев.- М.: “Высшая школа”, 2005. – 567 с.
  5. Tsui, C. Robust Control System Design: Advanced State Space Techniques[Text] / C. Tsui // Automation and Control Engineering.– CRC Press, 2003. – 500 p.
  6. Егупов, Н. Д. Методы классической и современной теории автоматического управления [Текст] / Н. Д. Егупов, К. А. Пупков // Синтез регуляторов систем автоматического управления. В 5 тт. — МГТУ им. Баумана, 2004.
  7. Андриевский, Б. Р. Избранные главы теории автоматического управления [Текст] / Б. Р. Андриевский, А. Л. Фрадков. – С-Пб.: “Наука”, 2000. -475 с.
  8. Shin Yung, C. Intelligent Systems: Modeling, Optimization, and Control (Automation and Control Engineering) [Text] / C. Yung, Shin, Chengying Xu. // Automation and Control Engineering. 30. – CRC Press, 2008. – 456 p.
  9. Hannu, T. A neural network model predictive controller [Electronic resource]/ T. Hannu // Available at: http://www.nt.ntnu.no/users/skoge/prost/proceedings/npc07/ABO/abo06.pdf . - Last access: 01.06.2013. – Title from the screen.
  10. Lazar, М. A Neural Predictive Controller For Non-linear Systems controller [Electronic resource] / М. Lazar // Available at: http:// www.cs.ele.tue.nl/ MLazar/MATCOMpaper.pdf. - Last access: 01.06.2013. – Title from the screen.
  11. Raemaekers, A. J. Design of a model predictive controller to control UAVs [Electronic resource]/ A. J. Raemaekers // Available at: http://alexandria.tue.nl/repository/books/657983.pdf. - Last access: 01.06.2013. – Title from the screen.
  12. Girish, C. Adaptive Neural Network Flight Control Using both Current and Recorded Data [Electronic resource]/ C. Girish // Available at: https://smartech.gatech.edu/bitstream/handle/1853/35867/chowdhary_gnc_2007_51.pdf?sequence=1. - Last access: 01.06.2013. – Title from the screen.
  13. Lewis, F. L. Neural Networks in Feedback Control Systems [Electronic resource]/ F. L. Lewis // Available at: http://www.pdx.edu/sites/www.pdx.edu.sysc/files/SySc576_FrankLewisNNsControl.pdf. - Last access: 01.06.2013.
  14. Nguyen, Nhan T. Neural Net Adaptive Flight Control Stability, Verification and Validation Challenges, and Future Research [Electronic resource]/ Nhan T. Nguyen // Available at: http://ti.arc.nasa.gov/m/pub-archive/1370h/1370%20(Nguyen).pdf. - Last access: 01.06.2013.
  15. Salah, I. AlSwailem. Application of Robust Control in Unmanned Vehicle Flight Control System Design [Electronic resource]/ I. AlSwailem Salah // Available at: https://dspace.lib.cranfield.ac.uk/bitstream/1826/136/2/ThesisMasterV2.pdf. - Last access: 01.06.2013.
  16. Буков, В. Н. Адаптивные прогнозирующие системы управления полетом [Текст] / В. Н. Буков. – М: “Наука”, 1987. -232 с.
  17. Зайцев, Г. Ф. Теория автоматического управления и регулирования [Текст] / Г. Ф. Зайцев. -К.:”Вища Школа”, 1988. -431 с.
  18. Ким, Д. П. Теория автоматического управления. Т.1 Линейные системы [Текст] / Д. П. Ким. - М.: “ФИЗМАТЛИТ”, 2003. - 287 с.
  19. Ким, Д.П. Теория автоматического управления. Т.2 Многомерные, нелинейные, оптимальные и адаптивные системы [Текст] / Д. П. Ким. - М.: “ФИЗМАТЛИТ”, 2004. - 464 с.
  20. Александров, А. А. Оптимальное управление летательным аппаратом с учетом ограничений на управление [Текст]: диссертация на соискание научной степени канд. тех. наук: 05.13.01 “ Системный анализ, управление и обработка информации “ / А. А. Александров. - С-Пб., 2009. - 134 c.
  21. Комашинский, В. И. Нейронные сети и их применение в системах управления и связи [Текст] / В. И. Комашинский, Д. А. Смирнов. М.: “Горячая линия - Телеком”, 2003. -94с.
  22. Abdessemed, F. SVM-Based Control System for a Robot Manipulator. [Electronic resource] / F. Abdessemed // Available at: http://cdn.intechopen.com/pdfs/41444/InTech-Svm_based_control_system_for_a_robot_manipulator.pdf.- Last access: 01.06.2013.
  23. Никифоров, В. О. Адаптивное и робастное управление с компенсацией возмущений [Текст]: диссертация на соискание научной степени канд. тех. наук: спец.: 05.13.01 “ Системный анализ, управление и обработка информации “/ В. О. Никифоров. - С.-Пб., 2001. - 259 c.
  24. Сизова, А. А. Синтез управления беспилотного летального аппарата при наличии возмущений на основе методов теории дифференциальных игр [Текст]: диссертация на соискание научной степени канд. тех. наук: спец. 05.13.01 “ Системный анализ, управление и обработка информации “ / A. A. Cизова. - С-Пб., 2010. - 177 с.
  25. Михайлин, Д. А. Нейросетевая система управления посадкой самолетного типа для беспилотного летательного аппарата [Текст]: диссертация на соискание научной степени канд. тех. наук: спец.: 05.13.01 “ Системный анализ, управление и обработка информации “/ Д. А. Михайлин. - М. 2009. - 99 с.
  26. Фролова, Л. Е. Синтез автопилота беспилотного летательного аппарата заданного класса на основе многоуровневой системы критериев оптимальности [Текст]: диссертация на соискание научной степени канд. тех. наук: спец.: 05.13.05 “Элементы и устройства вычислительной техники и систем управления”/ Л. Е. Фролова - Р., 2008. - 160 c.
  27. Ferrari, S. Robust and Reconfigurable Flight Control by Neural Networks [Electronic resource] / S. Ferrari, M. Jensenius // Mode of access: http://fred.mems.duke.edu/LISCpapers/AIAA-38208-826_AerospaceAtInfotech.pdf.- Last access: 01.06.2013.
  28. Calise, Anthony J., Adaptive Flight Control using Neural Networks [Electronic resource] / Anthony J. Calise, Rolf T. Rysdyk // Mode of access: http://www.aa.washington.edu/research/afsl/publications/rysdyk1998adaptiveNN.pdf.- Last access: 01.06.2013.
  29. Збруцький, О. В. Адаптивний алгоритм одного класу систем керування гарантованої точності при довільних збуреннях [Текст] / О. В. Збруцький, А. П. Прач // Наукові вісті НТУУ «КПІ» №2, 2008.. -c. 26-30.
  30. Niebylov, A. V. (1998). Ensuring accuracy of control. Moscow, Russia, 304.
  31. Poliak, B. T., Shchierbakov. P. S. (2002). Robust stability and control. Moscow, Russia:»Nauka», 303, 5-02- 002561-5.
  32. Fomin, V. N., Yakubovich V. A. (1981). Adaptive control of dynamic objects. Moscow, Russia, 558.
  33. Dushyn, S. E., Zotov, N. S., Imaiev, D. X., Kuzmin, N. N., Yakovliev, V. B. (2005). Automatic Control Theory. Moscow, Russia, 567.
  34. Tsui, C. (2003) Robust Control System Design: Advanced State Space Techniques. CRC Press, 500, 978-0824748692.
  35. Yehupov, N. D., Pupkov, K. A. (2004). Methods of classical and modern theory of automatic control. Synthesis of regulators of automatic control systems. Moscow, Russia.
  36. Andriievskyi, B. R., Fradkov, A. L. (2000). Selected chapters of the theory of automatic control. St. Petersburg, Russia: «Nauka”, 475, 5-02-024873-8.
  37. Shin Yung, C. (2008). Intelligent Systems: Modeling, Optimization, and Control (Automation and Control Engineering). CRC Press, 456, 978-1420051766.
  38. Hannu, T. A neural network model predictive controller. Available at: http://www.nt.ntnu.no/users/skoge/prost/proceedings/npc07/ABO/abo06.pdf.
  39. Lazar, М. A Neural Predictive Controller For Non-linear Systems controller. Available at: http://www.cs.ele.tue.nl/MLazar/MATCOMpaper.pdf.
  40. Raemaekers, A. J. Design of a model predictive controller to control UAVs. Available at: http://alexandria.tue.nl/repository/books/657983.pdf.
  41. Girish, C. Adaptive Neural Network Flight Control Using both Current and Recorded Data. Available at: https://smartech.gatech.edu/bitstream/handle/1853/35867/chowdhary_gnc_2007_51.pdf?sequence=1.
  42. Lewis, F. L. Neural Networks in Feedback Control Systems Available at: http://www.pdx.edu/sites/www.pdx.edu.sysc/files/SySc576_FrankLewisNNsControl.pdf.
  43. Nguyen, Nhan T. Neural Net Adaptive Flight Control Stability, Verification and Validation Challenges, and Future Research Available at: http://ti.arc.nasa.gov/m/pub-archive/1370h/1370%20(Nguyen).pdf.
  44. Salah, I. AlSwailem. Application of Robust Control in Unmanned Vehicle Flight Control System Available at: https://dspace.lib.cranfield.ac.uk/bitstream/1826/136/2/ThesisMasterV2.pdf.
  45. Bukov, V. N. (1987) Predictive adaptive flight control system. Moscow, Russia: «Nauka», 232.
  46. Zaitsev, H. F. (1988) Theory of automatic control and regulation. Kyiv, Ukraine:” Vyshcha Shkola “, 431, 5-11-000225-8.
  47. Kim, D. P. (2003) Automatic control theory. Vol.1 Linear systems. Moscow, Russia: « FYZMATLYT “, 287, 5-9221-0379-2.
  48. Kim, D. P. (2004) Automatic control theory. Vol.2 Multidimensional nonlinear optimal and adaptive systems. Moscow, Russia: “ FYZMATLYT “, 464, 5-9221-0534-5.
  49. Aleksandrov, A. A. (2009) Optimal control of the aircraft, taking into account constraints on the control. St. Petersburg, Russia, 134.
  50. Komashynskyi, V. I., Smirnov D. A. (2003) Neural networks and their applications in control and communication systems. Moscow, Russia: “ Horiachaia lynyia - Telekom “, 94, 5-93517-094-9.
  51. Abdessemed, F. SVM-Based Control System for a Robot Manipulator. Available at: http://cdn.intechopen.com/pdfs/41444/InTech-Svm_based_control_system_for_a_robot_manipulator.pdf.
  52. Nikiforov, V. O. (2001) Adaptive and robust control with disturbance compensation. St. Petersburg, Russia, 259.
  53. Sizova, A. A. (2010) Synthesis control UAV under disturbances based on the methods of the theory of differential games. St. Petersburg, Russia, 177.
  54. Mikhailin, D. A. (2009) Neural network control system for landing aircraft type UAV. Moscow, Russia, 99.
  55. Frolova, L. E. (2008) Synthesis of UAV autopilot given class based on a multilevel system of optimality criteria, Rybinsk, Russia, 160.
  56. Ferrari, S., Jensenius, M. Robust and Reconfigurable Flight Control by Neural Networks. Available at: http://fred.mems.duke.edu/LISCpapers/AIAA-38208-826_AerospaceAtInfotech.pdf.
  57. Calise, Anthony J., Rysdyk, Rolf T. Adaptive Flight Control using Neural Networks Available at: http://www.aa.washington.edu/research/afsl/publications/rysdyk1998adaptiveNN.pdf.
  58. Zbrutskyi, O. V., Prach, A. P. (2008) Adaptive algorithm of one class of control systems with guaranteed accuracy under unknown perturbations. Kyiv, Ukraine, “Naukovi visti” NTUU “KPI”, №2, 26-30.

Published

2014-04-18

How to Cite

Міщук, А. С. (2014). Review of existing control systems that are used on unmanned aerial vehicles. Eastern-European Journal of Enterprise Technologies, 2(9(68), 23–28. https://doi.org/10.15587/1729-4061.2014.23137

Issue

Section

Information and controlling system