Determining the loose medium movement parameters in a centrifugal continuous mixer using a discrete element method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.232636

Keywords:

discrete element method, centrifugal mixer, loose material, continuous mixing, mixture homogeneity

Abstract

The processes to form the compositions of loose materials in centrifugal mixers of continuous action have been considered. Based on the method of discrete elements, a mathematical model of the movement of particles in the rotor of the centrifugal mixer was built, taking into consideration their geometric and physical-mechanical parameters. To assess the extent of influence of these parameters on the nature of particle movement, a well-known mathematical model in the form of a system of differential equations was used, which was built on the basis of classical laws of mechanics. The process of mixing particles of two loose materials under different initial conditions of movement was modeled. The trajectories of individual particles along the bottom and side wall of the rotor were calculated.

The results of the research reported here have established that the model built on the basis of the discrete element method makes it possible to improve the accuracy of determining the parameters of the movement of loose materials in the mixing zone. Calculations that involved this method show that the length of the particle trajectory is 2.9, and the movement time is 9 times greater than those calculated by the system of differential equations. The built and known mathematical models demonstrated the same nature of the distribution of components in the mixer. The value of the Pearson correlation coefficient between the calculated values of the coefficients of variation is 0.758. The best homogeneity is achieved by separating the flows of the mixture components and reducing the distance between their centers.

The experimental study was carried out using a centrifugal mixer of continuous action with a conical rotor. Particle trajectories were constructed; it was established that the shape of the trajectory built by a discrete element method is closer to the experimental one.

The results reported in this paper make it possible to predict the impact of the structural and technological parameters of the mixers of continuous action on the uniformity of the mixture

Author Biographies

Volodymyr Statsenko, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Associate Professor

Department of Computer Engineering and Electromechanics

Oleksandr Burmistenkov, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Electromechanics

Tetiana Bila, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Engineering and Electromechanics

Svitlana Demishonkova, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Engineering and Electromechanics

References

  1. Statsenko, V. V., Burmistenkov, O. P., Bila, T. Ya. (2017). Avtomatyzovani kompleksy bezperervnoho pryhotuvannia kompozytsiy sypkykh materialiv. Kyiv: KNUTD, 219.
  2. Burmistenkov, O. P. et. al. (2011). Protsesy ta obladnannia pidhotovchykh vyrobnytstv lehkoi promyslovosti. Kyiv: KNUTD, 135.
  3. Burmistenkov, O. P. et. al.; Konoval, V. P. (Ed.) (2007). Vyrobnytstvo lytykh detalei ta vyrobiv z polimernykh materialiv u vzuttieviy ta shkirhalantereiniy promyslovosti. Khmelnytskyi: [b.v.], 255.
  4. Generalov, M. B. (2002). Mekhanika tverdyh dispersnyh sred v protsessah himicheskoy tekhnologii. Kaluga: N. Bochkarevoy, 592.
  5. Ahmadiev, F. G., Aleksandrovskiy, A. A. (1988). Modelirovanie i realizatsiya sposobov prigotovleniya smesey. Zhurn. Vsesoyuz. him. obshch-va im. D.I. Mendeleeva, 33 (4), 448.
  6. Bakin, I. A., Sablinskiy, A. I., Belousov, G. N. (2003). Kompleksnoe modelirovanie protsessov nepreryvnogo smeseprigotovleniya. Tekhnologiya i tekhnika pishchevyh proizvodstv. Sbornik nauchnyh rabot. Kemerovo: KemTIPP, 137–141.
  7. Zalyubovskii, M. G., Panasyuk, I. V. (2020). Studying the Main Design Parameters of Linkage Mechanisms of Part-Processing Machines with Two Working Barrels. International Applied Mechanics, 56 (6), 762–772. doi: https://doi.org/10.1007/s10778-021-01053-x
  8. Globin, A. N. (2009). Puti sovershenstvovaniya doziruyushchih ustroystv. Sovershenstvovanie tekhnologicheskih protsessov i tekhnicheskih sredstv v APK. Sb. nauchn. Tr. ACHGAA. Zernograd, 5–6.
  9. Synyuk, O., Musiał, J., Zlotenko, B., Kulik, T. (2020). Development of Equipment for Injection Molding of Polymer Products Filled with Recycled Polymer Waste. Polymers, 12 (11), 2725. doi: https://doi.org/10.3390/polym12112725
  10. Third, J. R., Scott, D. M., Lu, G., Müller, C. R. (2015). Modelling axial dispersion of granular material in inclined rotating cylinders with bulk flow. Granular Matter, 17 (1), 33–41. doi: https://doi.org/10.1007/s10035-014-0542-0
  11. Bila, T. Ya., Statsenko, V. V. (2006). Analitychne doslidzhennia rukhu chastok sumishi u dvorotornomu zmishuvachi bezperervnoi diyi. Visnyk KNUTD, 5, 30–34.
  12. Alchikh-Sulaiman, B. (2011). Assessment of the Mixing of Polydisperse Solid Particles in the Rotary Drum and Slant Cone Mixers Using Discrete Element Method. Ryerson University. Available at: https://digital.library.ryerson.ca/islandora/object/RULA%3A3326/datastream/OBJ/view
  13. Pellegrini, M. (2014). DEM simulation of continuous pharmaceutical powders mixing effect of non-constant feeding on mixing quality. Santomaso, Andrea. Available at: http://tesi.cab.unipd.it/45721/
  14. Borodulin, D. M., Andryushkov, A. A. (2009). The analysis of the operation of combinuous type mixing on the basis of the covariation approach. Tekhnika i tekhnologiya pishchevyh proizvodstv, 4. Available at: https://cyberleninka.ru/article/n/prognozirovanie-sglazhivayuschey-sposobnosti-tsentrobezhnogo-smesitelya-na-osnove-korrelyatsionnogo-analiza
  15. Pernenkil, L. (2008). Continuous blending of dry pharmaceutical powders. Massachusetts Institute of Technology. Available at: https://www.researchgate.net/publication/38003180_Continuous_blending_of_dry_pharmaceutical_powders
  16. De Monaco, G. (2015). 3D finite volume simulations of dense granular flow inside rotating cylinders. Università degli Studi di Napoli Federico II. 2015. doi: http://doi.org/10.6092/UNINA/FEDOA/10410
  17. Prashidha, K. (2018). Internal Dynamics and Flow Properties of Dense Granular Materials. A thesis. The University of Sydney. Available at: https://ses.library.usyd.edu.au/handle/2123/19647
  18. Popov, A. M., Tikhonov, V. V., Tikhonov, N. V., Borodulin, D. M. (2014). Reception of Two and Three-phase Combined Dispersive Systems with the Use of Centrifugal Mixer. Procedia Chemistry, 10, 400–409. doi: https://doi.org/10.1016/j.proche.2014.10.067
  19. Statsenko, V., Burmistenkov, O., Bila, T., Statsenko, D. (2019). Determining the motion character of loose materials in the system of continuous action «hopper – reciprocating plate feeder». Eastern-European Journal of Enterprise Technologies, 2 (1 (98)), 21–28. doi: https://doi.org/10.15587/1729-4061.2019.163545
  20. Statsenko, V. V., Burmistenkov, O. P., Bila, T. Y. (2020). Determination of the bulk materials particles distribution during mixing in the continuous action centrifugal mixers rotor. Herald of Khmelnytskyi national university, 1 (281), 238–244. Available at: http://journals.khnu.km.ua/vestnik/wp-content/uploads/2021/01/39-3.pdf
  21. Yan, Z., Wilkinson, S. K., Stitt, E. H., Marigo, M. (2015). Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis. Computational Particle Mechanics, 2 (3), 283–299. doi: https://doi.org/10.1007/s40571-015-0056-5
  22. Popov, V. L. (2012). Mekhanika kontaktnogo vzaimodeystviya i fizika treniya. Moscow: Fizmatlit, 348.
  23. Mindlin, R. D., Deresiewicz, H. (1953). Elastic Spheres in Contact under Varying Oblique Forces. J. Appl. Mech., 20, 327–344.
  24. Marsov, V. I., Suetina, T. A., Kolbasin, A. M., Shuhin, V. V. (2013). Dispensers continuous compensated disturbance input material. Mekhanizatsiya stroitel'stva, 2, 32–34. Available at: https://elibrary.ru/item.asp?id=18834562
  25. Magalhães, F. G. R., Atman, A. P. F., Moreira, J. G., Herrmann, H. J. (2016). Analysis of the velocity field of granular hopper flow. Granular Matter, 18 (2). doi: https://doi.org/10.1007/s10035-016-0636-y
  26. Munjiza, A. (2004). The Combined Finite-Discrete Element Method. Wiley, 348. Available at: https://www.wiley.com/en-us/The+Combined+Finite+Discrete+Element+Method-p-9780470020173

Downloads

Published

2021-06-30

How to Cite

Statsenko, V., Burmistenkov, O. ., Bila, T., & Demishonkova, . S. (2021). Determining the loose medium movement parameters in a centrifugal continuous mixer using a discrete element method. Eastern-European Journal of Enterprise Technologies, 3(7 (111), 59–67. https://doi.org/10.15587/1729-4061.2021.232636

Issue

Section

Applied mechanics