Parameters optimization of centrifugal juicer with auto-balancer by minimization of time of autobalancing occurred

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.23317

Keywords:

centrifugal juicer, auto-balancer, parameters optimization, multifactorial experiment, regression function

Abstract

A method for optimizing the parameters of passive auto-balancer in rotary machines in terms of minimizing the functional quality as a decay time of transition. It is based on the theory of planning multifactorial experiment, analysis of the experimental data using programs STATISTICA_6, MathCad. Technique is aimed at:

– construction of the approximating model correlation between functional quality and controlling factors of a rotary machine with auto-balancer;

– search the factor values for constructed model at which the functional quality takes the smallest and largest value.

Correlation is constructed as the equality of two functional expressions. Left-hand side is the expression relative to the functional quality. Right-hand side is the expression on the factors. The specifics of the problem is that the predicted minimum value of the functional quality should not be less than the acceleration time of the rotor.

As the right-hand side offered two varieties of functions: theTaylorseries expansion in powers of the factors of the first and second order; with hyperbolic components. As the left side proposed three types of functions, suitable for finding the values of the functional quality, respectively the largest, smallest, as the smallest and largest.

Was conducted testing the proposed method for 3D model of juicer with auto-balancer.

The proposed method may be standard in the optimization of the parameters of passive auto-balancers in rotary machines by time decay of transients. 

Author Biographies

Геннадий Борисович Филимонихин, Kirovograd National Technical University University Ave 8, Kirovograd, Ukraine, 25006

Professor

Department of Machine Parts and Applied Mechanics

Валерий Владимирович Гончаров, Kirovograd National Technical University pr. University, 8, Kirovograd, Ukraine, 25006

Docent

Department of Mathematics

References

  1. Гусаров, А. А. Автобалансирующие устройства прямого действия [Текст] / А. А. Гусаров. – М.: Наука, 2002. – 119 с. 2. Філімоніхін, Г. Б. Зрівноваження і віброзахист роторів автобалансирами з твердими коригувальними вантажами [Текст] / Г. Б. Філімоніхін. – Кіровоград: КНТУ, 2004. – 352 с. 3. Нестеренко, В. П. Автоматическая балансировка роторов приборов и машин со многими степенями свободы [Текст] / В. П. Нестеренко. – Томск: Изд-во Томск. ун-та, 1985. – 84 с. 4. Rodrigues, D. J. Automatic two-plane balancing for rigid rotors [Text] / D. J. Rodrigues, A. R. Champneys, M. I. Friswell, R. E. Wilson // International Journal of Non-Linear Mechanics. – 2008. – Vol. 43, Issue 6. – P. 527–541. 5. Гончаров, В. В. Технічні рішення із зрівноваження на ходу екстракторів відцентрових соковижималок [Текст] / В. В. Гон- чаров, Г. Б. Філімоніхін // Загальнодержавний міжвідомчий н.-т. збірник “Конструювання, виробництво та експлуатація сільськогосподарських машин”. – 2013. – Вип. 43, Ч. I. – С. 257–262. 6. Летаев, Д. А. Бытовые электроприборы для кухни [Текст] : справ. пособие / Д. А. Летаев. – Москва: Легпромбытиздат, 1992. – 96 с. 7. Партала, О. Н. Справочник по ремонту бытовых электроприборов [Текст] / О. Н. Партала. – СПб: Наука и техника, 2010.– 400 с. 8. Филимонихин, Г. Б. Стенд центробежной соковыжималки с автобалансиром для определения оптимальных значений пара¬метров автобалансира [Текст] / Г. Б. Филимонихин, В. В. Гончаров // Вестник национального технического университета «ХПИ».– 2013. – Вып. 70. – С. 22–27. 9. Гончаров, В. В. 3D моделирование динамики центробежной соковыжималки с шаровым автобалансиром [Текст] / В. В. Гон¬чаров, Г. Б. Филимонихин // Технологічний аудит та резерви виробнищтва. – 2013. – Т. 6, №. 1 (14). – С. 15–18. 10. Алямовский, А. А. COSMOSWorks. Основы расчета конструкций на прочность в среде SolidWorks [Текст] / А. А. Алямов- ский. – М.: ДМК Пресс, 2010. – 784 с. 11. Kuang-Hua, Chang Motion Simulation and Mechanism Design with COSMOSMotion 2007 [Text] / Chang Kuang-Hua. – Pub¬lisher: Schroff Development Corporation, 2008. – 142 p. 12. Гончаров, В. В. Методика оптимизации параметров шарового автобалансира на примере минимизации установившегося виброускорения 3D модели центробежной соковыжималки [Текст] / В. В. Гончаров, Г. Б. Филимонихин // Восточно-Евро¬пейский журнал передовых технологий. – 2014. –Т. 1, №7 (67). – С. 9–14. 13. Ермаков, С. М. Математическая теория планирования эксперимента [Текст] / С. М. Ермаков, В. З. Бродский, А. А. Жигляв¬ский и др.; под общей редакцией С. М. Ермакова. – М.: Наука. Гл. ред. физ.-мат. лит., 1983. – 392 с. 14. Халафян, А. А. Statistica 6. Статистический анализ данных [Текст] : учеб. / А. А. Халафян. – М.: ООО «Бином-Пресс», 2007. – 512 с. 1. Gusarov, A. (2002). Device Avtobalansyruyuschye direct action. Moscow: Nauka, 119. 2. Filimonihin, G. (2004). Balancing and vibration protection with solid rotors avtobalansyramy corrective weights. Kirovograd: KNTU, 352. 3. Nesterenko, V. (1985). Automatic rotor balancing devices and machines with many degrees of freedom. Tomsk: Publishing House of Tomsk. University Press, 84. 4. Rodrigues, D., Champneys, A., Friswell, M., Wilson, R. (2008). Automatic two-plane balancing for rigid rotors. International Journal of Non-Linear Mechanics, Vol. 43, Issue 6, 527–541. 5. Goncharov, V., Filimonihina, G. (2013). Technical solutions of balancing on the go centrifugal juicers extractors. A national multisectoral n.-t. collection of “Design, manufacture and operation of agricultural machines”, Vol. 43, Part I, 257–262. 6. Letaev, D. (1992). Household electrical appliances for the kitchen. Ref. allowance. Moscow: Legprombytizdat, 96. 7. Partala, O. (2010). Guide to repair household appliances. St. Petersburg: Science and Technology, 400. 8. Filimonihin, G., Goncharov, V. (2013). Stand centrifugal juicer with autobalancing to determine the optimal parameter values auto-balancer. Herald National Technical University “KPI”, Vol. 70, 22–27. 9. Goncharov, V., Filimonihin, G. (2013). 3D modeling of the dynamics of a centrifugal juicer with ball autobalancing. Tehnologіchny audit that redundant virobnischtva, Vol. 6, №. 1 (14), 15–18. 10. Alyamovsky, A. (2010). COSMOSWorks. Fundamentals of de¬sign of structures for durability in the environment SolidWorks. Moscow: DMK Press, 784. 11. Kuang-Hua, Chang. (2008). Motion Simulation and Mechanism Design with COSMOSMotion 2007. Pub¬lisher: Schroff Development Corporation, 142. 12. Goncharov, V., Filimonihin, G. (2014). Method of parameters optimization of ball-type auto-balancer on the example of mini¬mization of steady vibration acceleration of 3D model of the centrifugal juicer. East European Journal of advanced technolo¬gies, 1(7(67)), 9–14. 13. Ermakov, S., Brodsky, V., Zhiglyavskii, A. (1983). The mathematical theory of experiment planning. Moscow: Nauka. Chap. Ed. Sci. lit., 392. 14. Khalafyan, A. (2007). Statistica 6. Statistical analysis of the data. 3rd ed. Textbook. Moscow: OOO ”Bean-Press”, 512.

Published

2014-04-08

How to Cite

Филимонихин, Г. Б., & Гончаров, В. В. (2014). Parameters optimization of centrifugal juicer with auto-balancer by minimization of time of autobalancing occurred. Eastern-European Journal of Enterprise Technologies, 2(7(68), 28–32. https://doi.org/10.15587/1729-4061.2014.23317

Issue

Section

Applied mechanics