Developing a method for determining the dynamic parameters of the operator of a mobile fire engine based on a Segway
DOI:
https://doi.org/10.15587/1729-4061.2021.233365Keywords:
operator of a mobile fire engine, segway, dynamic parameters of the operator, frequency characteristics of the operatorAbstract
A method for determining the dynamic parameters of the operator of a mobile fire engine based on a segway, which fully characterize its dynamic properties – delay time and inertia was developed. The development of the method includes four stages. At the first stage, the problem of obtaining analytical relationships for determining the dynamic parameters of the operator is solved. These relationships include the frequency characteristics of the operator at a fixed frequency and its static parameter. At the second stage, the choice of a fixed frequency is substantiated using a criterion that minimizes errors in determining the dynamic parameters. It is shown that the fixed frequency for the characteristic parameters of the operator does not exceed 0.5 Hz. The third stage includes substantiation of the procedure for determining the frequency characteristics of the operator and its static parameter. The frequency characteristics of the operator at a fixed frequency and its static parameter are determined numerically. This procedure is based on using the data obtained by measuring the values of the operator’s transfer function at fixed time intervals. To obtain data, an interactive analog engine is used, which can also perform the functions of a simulator. The time intervals are chosen according to the Kotelnikov-Nyquist-Shannon theorem. At the last stage, the procedure for determining the dynamic parameters of the operator of a segway-based mobile fire engine is described.
It is shown that the error in determining the dynamic parameters of the operator of a mobile fire engine does not exceed 9.0 %, if the error in determining its frequency characteristics at a frequency of 2.5 s–1 does not exceed 2.0 %
References
- Pozhar vnutri sobora Parizhskoy Bogomateri tushil robot Colossus. Available at: https://topcor.ru/7941-pozhar-vnutri-cobora-parizhskoi-bogomateri-tushil-robot-colossus.html
- Umniy pozharniy robot na giroskutere prezentovali v Petrozavodske. Available at: http://rk.karelia.ru/ekonomika/production/v-petrozavodske-prezentovali-umnyj-pozharnyj-robot-na-giroskutere/
- Villani, V., Czerniak, J. N., Sabattini, L., Mertens, A., Fantuzzi, C. (2019). Measurement and classification of human characteristics and capabilities during interaction tasks. Paladyn, Journal of Behavioral Robotics, 10 (1), 182–192. doi: https://doi.org/10.1515/pjbr-2019-0016
- Kaber, D. B. (2017). Issues in Human–Automation Interaction Modeling: Presumptive Aspects of Frameworks of Types and Levels of Automation. Journal of Cognitive Engineering and Decision Making, 12 (1), 7–24. doi: https://doi.org/10.1177/1555343417737203
- Müller, R., Oehm, L. (2018). Process industries versus discrete processing: how system characteristics affect operator tasks. Cognition, Technology & Work, 21 (2), 337–356. doi: https://doi.org/10.1007/s10111-018-0511-1
- Kopyt, A., Dziewoński, T., Jastrzębski, D., Golon, K., Mirosław, M. (2017). Modeling of a human driver for a car driving simulator. 50th Annual Simulation Symposium (ANSS 2017). doi: https://doi.org/10.22360/springsim.2017.anss.005
- Aydin, Y., Tokatli, O., Patoglu, V., Basdogan, C. (2018). Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control. IEEE Transactions on Haptics, 11 (3), 464–475. doi: https://doi.org/10.1109/toh.2018.2810871
- Yao, B., Zhou, Z., Wang, L., Xu, W., Liu, Q., Liu, A. (2018). Sensorless and adaptive admittance control of industrial robot in physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 51, 158–168. doi: https://doi.org/10.1016/j.rcim.2017.12.004
- Tölgyessy, M., Dekan, M., Hubinský, P. (2018). Human-Robot Interaction Using Pointing Gestures. Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control. doi: https://doi.org/10.1145/3284557.3284718
- Nemec, D., Janota, A., Gregor, M., Hruboš, M., Pirník, R. (2017). Control of the mobile robot by hand movement measured by inertial sensors. Electrical Engineering, 99 (4), 1161–1168. doi: https://doi.org/10.1007/s00202-017-0614-3
- Buldakova, T. I., Suyatinov, S. I. (2019). Hierarchy of Human Operator Models for Digital Twin. 2019 International Russian Automation Conference (RusAutoCon). doi: https://doi.org/10.1109/rusautocon.2019.8867602
- Iqbal, M. U., Srinivasan, R. (2018). Simulator based performance metrics to estimate reliability of control room operators. Journal of Loss Prevention in the Process Industries, 56, 524–530. doi: https://doi.org/10.1016/j.jlp.2017.10.011
- Surya Atman, M. W., Noda, K., Funada, R., Yamauchi, J., Hatanaka, T., Fujita, M. (2019). On Passivity-Shortage of Human Operators for A Class of Semi-autonomous Robotic Swarms. IFAC-PapersOnLine, 51 (34), 21–27. doi: https://doi.org/10.1016/j.ifacol.2019.01.008
- Khudyakova, E. P., Sedelkova, V. A., Tarasenkov, G. G., Chertopolokhov, V. A., Belousova, M. D., Natura, E. S. (2021). Characteristics of operator performance in controlling a virtual lunar rover during simulated lunar gravity. AIP Conference Proceedings, 2318 (1). doi: https://doi.org/10.1063/5.0035989
- Van Grootheest, H. A. (2017). Human-Operator Identification with Time-Varying ARX Models. TU Delft Library. Available at: https://repository.tudelft.nl/islandora/object/uuid:da69d1cf-3274-466f-bbc2-573f571d154e?collection=education
- Cimini, C., Pirola, F., Pinto, R., Cavalieri, S. (2020). A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, 54, 258–271. doi: https://doi.org/10.1016/j.jmsy.2020.01.002
- Abramov, Yu. O., Tyshchenko, Ye. O., Sobyna, V. O. (2017). Pat. No. 119180 UA. Mobilna pozhezhna ustanovka. No. u201704071; declareted: 24.07.2017; published: 11.09.2017, Bul. No. 17. Available at: https://uapatents.com/4-119180-mobilna-pozhezhna-ustanovka.html
- Sobina, V., Hizhnyak, A., Abramov, Yu. (2019). Determination of parameters of the model of the operator of a mobile fire installation. Problemy pozharnoy bezopasnosti, 45, 161–166. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol45/Sobina.pdf
- Abramov, Yu. O., Sobyna, V. O., Tyshchenko, Ye. O., Khyzhniak, A. A., Danilin, O. M. (2019). Pat. No. 135301 UA. Prystriy dlia vyznachennia kharakterystyk operatora mobilnoho pozhezhnoho robota. No. 201900596; declareted: 21.01.2019; published: 25.06.2019, Bul. No. 12. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=259676
- Abramov, Y., Basmanov, O., Krivtsova, V., Mikhayluk, A. (2018). The synthesis of control algorithm over a technical condition of the hydrogen generators based on hydroreactive compositions. Eastern-European Journal of Enterprise Technologies, 3 (2 (93)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.131020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Юрий Алексеевич Абрамов, Алексей Евгеньевич Басманов, Валентина Ивановна Кривцова, Виталий Александрович Собина, Дмитрий Львович Соколов
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.