Developing a method for determining the dynamic parameters of the operator of a mobile fire engine based on a Segway

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.233365

Keywords:

operator of a mobile fire engine, segway, dynamic parameters of the operator, frequency characteristics of the operator

Abstract

A method for determining the dynamic parameters of the operator of a mobile fire engine based on a segway, which fully characterize its dynamic properties – delay time and inertia was developed. The development of the method includes four stages. At the first stage, the problem of obtaining analytical relationships for determining the dynamic parameters of the operator is solved. These relationships include the frequency characteristics of the operator at a fixed frequency and its static parameter. At the second stage, the choice of a fixed frequency is substantiated using a criterion that minimizes errors in determining the dynamic parameters. It is shown that the fixed frequency for the characteristic parameters of the operator does not exceed 0.5 Hz. The third stage includes substantiation of the procedure for determining the frequency characteristics of the operator and its static parameter. The frequency characteristics of the operator at a fixed frequency and its static parameter are determined numerically. This procedure is based on using the data obtained by measuring the values of the operator’s transfer function at fixed time intervals. To obtain data, an interactive analog engine is used, which can also perform the functions of a simulator. The time intervals are chosen according to the Kotelnikov-Nyquist-Shannon theorem. At the last stage, the procedure for determining the dynamic parameters of the operator of a segway-based mobile fire engine is described.

It is shown that the error in determining the dynamic parameters of the operator of a mobile fire engine does not exceed 9.0 %, if the error in determining its frequency characteristics at a frequency of 2.5 s–1 does not exceed 2.0 %

Author Biographies

Yuriy Abramov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor, Chief Researcher

Research Center

Oleksii Basmanov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor, Chief Researcher

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

Valentina Krivtsova, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Department of Physical and Mathematical Sciences

Vitaliy Sobyna, National University of Civil Defence of Ukraine

PhD, Associate Professor, Head of Department

Department of Logistics and Technical Support of Rescue Operations

Dmitry Sokolov, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Logistics and Technical Support of Rescue Operations

References

  1. Pozhar vnutri sobora Parizhskoy Bogomateri tushil robot Colossus. Available at: https://topcor.ru/7941-pozhar-vnutri-cobora-parizhskoi-bogomateri-tushil-robot-colossus.html
  2. Umniy pozharniy robot na giroskutere prezentovali v Petrozavodske. Available at: http://rk.karelia.ru/ekonomika/production/v-petrozavodske-prezentovali-umnyj-pozharnyj-robot-na-giroskutere/
  3. Villani, V., Czerniak, J. N., Sabattini, L., Mertens, A., Fantuzzi, C. (2019). Measurement and classification of human characteristics and capabilities during interaction tasks. Paladyn, Journal of Behavioral Robotics, 10 (1), 182–192. doi: https://doi.org/10.1515/pjbr-2019-0016
  4. Kaber, D. B. (2017). Issues in Human–Automation Interaction Modeling: Presumptive Aspects of Frameworks of Types and Levels of Automation. Journal of Cognitive Engineering and Decision Making, 12 (1), 7–24. doi: https://doi.org/10.1177/1555343417737203
  5. Müller, R., Oehm, L. (2018). Process industries versus discrete processing: how system characteristics affect operator tasks. Cognition, Technology & Work, 21 (2), 337–356. doi: https://doi.org/10.1007/s10111-018-0511-1
  6. Kopyt, A., Dziewoński, T., Jastrzębski, D., Golon, K., Mirosław, M. (2017). Modeling of a human driver for a car driving simulator. 50th Annual Simulation Symposium (ANSS 2017). doi: https://doi.org/10.22360/springsim.2017.anss.005
  7. Aydin, Y., Tokatli, O., Patoglu, V., Basdogan, C. (2018). Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control. IEEE Transactions on Haptics, 11 (3), 464–475. doi: https://doi.org/10.1109/toh.2018.2810871
  8. Yao, B., Zhou, Z., Wang, L., Xu, W., Liu, Q., Liu, A. (2018). Sensorless and adaptive admittance control of industrial robot in physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 51, 158–168. doi: https://doi.org/10.1016/j.rcim.2017.12.004
  9. Tölgyessy, M., Dekan, M., Hubinský, P. (2018). Human-Robot Interaction Using Pointing Gestures. Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control. doi: https://doi.org/10.1145/3284557.3284718
  10. Nemec, D., Janota, A., Gregor, M., Hruboš, M., Pirník, R. (2017). Control of the mobile robot by hand movement measured by inertial sensors. Electrical Engineering, 99 (4), 1161–1168. doi: https://doi.org/10.1007/s00202-017-0614-3
  11. Buldakova, T. I., Suyatinov, S. I. (2019). Hierarchy of Human Operator Models for Digital Twin. 2019 International Russian Automation Conference (RusAutoCon). doi: https://doi.org/10.1109/rusautocon.2019.8867602
  12. Iqbal, M. U., Srinivasan, R. (2018). Simulator based performance metrics to estimate reliability of control room operators. Journal of Loss Prevention in the Process Industries, 56, 524–530. doi: https://doi.org/10.1016/j.jlp.2017.10.011
  13. Surya Atman, M. W., Noda, K., Funada, R., Yamauchi, J., Hatanaka, T., Fujita, M. (2019). On Passivity-Shortage of Human Operators for A Class of Semi-autonomous Robotic Swarms. IFAC-PapersOnLine, 51 (34), 21–27. doi: https://doi.org/10.1016/j.ifacol.2019.01.008
  14. Khudyakova, E. P., Sedelkova, V. A., Tarasenkov, G. G., Chertopolokhov, V. A., Belousova, M. D., Natura, E. S. (2021). Characteristics of operator performance in controlling a virtual lunar rover during simulated lunar gravity. AIP Conference Proceedings, 2318 (1). doi: https://doi.org/10.1063/5.0035989
  15. Van Grootheest, H. A. (2017). Human-Operator Identification with Time-Varying ARX Models. TU Delft Library. Available at: https://repository.tudelft.nl/islandora/object/uuid:da69d1cf-3274-466f-bbc2-573f571d154e?collection=education
  16. Cimini, C., Pirola, F., Pinto, R., Cavalieri, S. (2020). A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, 54, 258–271. doi: https://doi.org/10.1016/j.jmsy.2020.01.002
  17. Abramov, Yu. O., Tyshchenko, Ye. O., Sobyna, V. O. (2017). Pat. No. 119180 UA. Mobilna pozhezhna ustanovka. No. u201704071; declareted: 24.07.2017; published: 11.09.2017, Bul. No. 17. Available at: https://uapatents.com/4-119180-mobilna-pozhezhna-ustanovka.html
  18. Sobina, V., Hizhnyak, A., Abramov, Yu. (2019). Determination of parameters of the model of the operator of a mobile fire installation. Problemy pozharnoy bezopasnosti, 45, 161–166. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol45/Sobina.pdf
  19. Abramov, Yu. O., Sobyna, V. O., Tyshchenko, Ye. O., Khyzhniak, A. A., Danilin, O. M. (2019). Pat. No. 135301 UA. Prystriy dlia vyznachennia kharakterystyk operatora mobilnoho pozhezhnoho robota. No. 201900596; declareted: 21.01.2019; published: 25.06.2019, Bul. No. 12. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=259676
  20. Abramov, Y., Basmanov, O., Krivtsova, V., Mikhayluk, A. (2018). The synthesis of control algorithm over a technical condition of the hydrogen generators based on hydro­reactive compositions. Eastern-European Journal of Enterprise Technologies, 3 (2 (93)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.131020

Downloads

Published

2021-06-30

How to Cite

Abramov, Y., Basmanov, O., Krivtsova, V., Sobyna, V., & Sokolov, D. (2021). Developing a method for determining the dynamic parameters of the operator of a mobile fire engine based on a Segway . Eastern-European Journal of Enterprise Technologies, 3(3 (111), 58–63. https://doi.org/10.15587/1729-4061.2021.233365

Issue

Section

Control processes