Short-term fire forecast based on air state gain recurrence and zero-order brown model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.233606

Keywords:

fire forecasting, zero-order Brown model, out-of-limit set, ignition, recurrence measure

Abstract

Possibilities of parameterization of the zero-order Brown model for indoor air forecasting based on the current measure of air state gain recurrence are considered. The key to the zero-order parametric Brown forecasting model is the selection of the smoothing parameter, which characterizes forecast adaptability to the current air state gain recurrence measure. It is shown that for effective short-term indoor fire forecast, the Brown model parameter must be selected from the out-of-limit set defined by 1 and 2. The out-of-limit set for the Brown model parameter is an area of effective fire forecasting based on the measure of current indoor air state gain recurrence. Errors of fire forecast based on the parameterized zero-order Brown model in the case of the classical and out-of-limit sets of the model parameters are investigated using the example of ignition of various materials in a laboratory chamber. As quantitative indicators of forecast quality, the absolute and mean forecast errors exponentially smoothed with a parameter of 0.4 are investigated. It was found that for alcohol, the smoothed absolute and mean forecast errors for the classical smoothing parameter in the no-ignition interval do not exceed 20 %. At the same time, for the out-of-limit case, the indicated forecast errors are, on average, an order of magnitude smaller. Similar ratios for forecast errors remain in paper, wood and textile ignition. However, for the transition zone corresponding to the time of material ignition, a sharp decrease in the current measure of chamber air state gain recurrence is observed. It was found that for this zone, the smoothed absolute forecast error for alcohol is about 2 % if the model parameter is selected from the classical set. If the model parameter is selected from the out-of-limit set, the forecast error is about 0.2 %. The results generally demonstrate significant advantages of using the zero-order Brown parametric model with out-of-limit model parameters for indoor fire forecasting

Author Biographies

Boris Pospelov, Scientific-methodical Center of Educational Institutions in Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Department of Organization and Coordination of Research Activities

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Senior Researcher

Research Center

 

Ruslan Meleshchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire and Rescue Training

Olekcii Krainiukov, V. N. Karazin Kharkov National University

Doctor of Geographical Sciences, Associate Professor

Department of Environmental Safety and Environmental Education

Igor Biryukov, National Academy of National Guard of Ukraine

Doctor of Technical Sciences, Associate Professor

Department of Missile and Artillery Weapons

Tetiana Butenko, Scientific-methodical Center of Educational Institutions in Sphere of Civil Defence

PhD, Senior Research

Department of Organization and Coordination of Research Activities

Oleksandr Yashchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization of civil Defence

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Kostiantyn Karpets, V. N. Karazin Kharkov National University

PhD, Associate Professor

Department of Ecology and Neoecology

Ruslan Vasylchenko, National Academy of National Guard of Ukraine

PhD

Department of Research and Organization

References

  1. Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: http://doi.org/10.32434/0321-4095-2019-122-1-92-99
  2. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: http://doi.org/10.15587/1729-4061.2018.121727
  3. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: http://doi.org/10.5604/01.3001.0012.2830
  4. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: http://doi.org/10.6001/energetika.v64i4.3893
  5. Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2017). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 3, 655–664.
  6. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et. al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: http://doi.org/10.5604/01.3001.0012.9654
  7. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: http://doi.org/10.1051/e3sconf/20186000003
  8. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
  9. Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: http://doi.org/10.3233/ajw-170035
  10. Reproduced with permission from fire loss in the United States during 2019 (2020). National Fire Protection Association, 11. Available at: https://www.nfpa.org/
  11. Koshmarov, Yu. A., Puzach, S. V., Andreev, V. V. (2012). Prognozirovanie opasnykh faktorov pozhara v pomeschenii. AGPS MCHS Rossii, 126.
  12. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: http://doi.org/10.1088/1757-899x/708/1/012065
  13. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: http://doi.org/10.15587/1729-4061.2018.133127
  14. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.101985
  15. Ahn, C. -S., Kim, J. -Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117, 185–196. doi: http://doi.org/10.2495/safe110171
  16. Recurrence plots and their quantifications: expanding horizons (2015). International Symposium on Recurrence Plots. Grenoble, 380.
  17. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: http://doi.org/10.15587/1729-4061.2020.218714
  18. Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge university press, 416.
  19. Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: http://doi.org/10.1007/s10694-011-0230-0
  20. Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
  21. Ji, J., Yang, L., Fan, W. (2003). Experimental study on effects of burning behaviours of materials caused by external heat radiation. JCST, 9, 139.
  22. Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. Journal of Chongqing University, 28, 122.
  23. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: http://doi.org/10.15587/1729-4061.2017.96694
  24. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: http://doi.org/10.15587/1729-4061.2018.142995
  25. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.108448
  26. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: http://doi.org/10.15587/1729-4061.2017.110092
  27. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., & Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: http://doi.org/10.15587/1729-4061.2017.117789
  28. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: http://doi.org/10.1002/9781118032428
  29. Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: http://doi.org/10.1155/2009/673539
  30. Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL.
  31. Pretrel, H., Querre, P., Forestier, M. (2005). Experimental Study Of Burning Rate Behaviour In Confined And Ventilated Fire Compartments. Fire Safety Science, 8, 1217–1228. doi: http://doi.org/10.3801/iafss.fss.8-1217
  32. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: http://doi.org/10.15587/1729-4061.2018.122419
  33. Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, Amazon, 655.
  34. Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304. doi: http://doi.org/10.1109/tsp.2009.2028978
  35. Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: http://doi.org/10.1016/j.jmaa.2012.09.053
  36. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: http://doi.org/10.15587/1729-4061.2018.125926
  37. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: http://doi.org/10.15587/1729-4061.2021.226692
  38. Sinaga, H. D. E., Irawati, N. (2018). A medical disposable supply demand forecasting by moving average and exponential smoothing method. WMA-2. Padang. doi: http://doi.org/10.4108/eai.24-1-2018.2292378
  39. Svetunkov, S. G. (2002). O rasshirenii granits primeneniya metoda Brauna. Izvestiya Sankt-Peterburgskogo gosudarstvennogo universiteta ekonomiki i finansov, 3, 94–107.
  40. Mandelbrot, B. (2002). Fraktalnaya geometriya prirodyi. Institut kompyuternyih issledovaniy, 656, 12.
  41. Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (4), 1003–1017. doi: http://doi.org/10.1142/s0218127411029008
  42. Webber, Jr. C. L., Zbilut, J. P. (2005). Recurrence quantification analysis ofnonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 26–94.
  43. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: http://doi.org/10.15587/1729-4061.2019.176579
  44. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: http://doi.org/10.15587/1729-4061.2019.187252
  45. Orlova, I. V., Polovnikov, V. A. (2010). Ekonomiko-matematicheskie metody i modeli: kompyuternoe modelirovanie. Moscow: INFRA-M, 366.

Downloads

Published

2021-06-30

How to Cite

Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T., Yashchenko, O., Bezuhla, Y., Karpets, K., & Vasylchenko, R. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3(10(111), 27–33. https://doi.org/10.15587/1729-4061.2021.233606