Plant biomass as organic fuel

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.23394

Keywords:

thermo-chemical conversion, plant biomass, alternative fuel, agricultural waste, gasification

Abstract

Application of biomass for generating heat and electric energy is substantiated. The basic reasons for using organic materials as renewable energy sources are described. The examples of industrial use of energy, produced from biomass in the EU countries are given.

Suitability of various types of biomass (sunflower, buckwheat and oats husk) for further thermo-chemical conversion to produce alternative fuel is experimentally investigated.

When generalizing the physical and technical characteristics of different types of biomass, the results of studying a number of agricultural waste, as well as foreign authors' data were used.

The results of the technical analysis (moisture content, ash content, calorific value) of several analytical samples of agricultural waste are given.

The elemental composition of some types of plant material is studied, thus allowing to state that the mentioned agricultural waste is highly reactive fuel with high volatile-matter yield.

The mineral composition of organic waste: oxides of silicon (40...87 %), iron (0.2...7.7 %), calcium (0.6...30.6 %) and potassium (6.2...20 %), which has no significant effect on the heating surface contamination is investigated.

The data on the elemental composition of peat, its calorific value, as well as on the products of peat decomposition at different temperatures (350, 400, 450, 520°C) are submitted.

Based on the content of ash, water-insoluble substances, lignin, hemicellulose and cellulose, wood composition depending on the breed is determined.

 

Author Biographies

Алексей Алексеевич Осьмак, National University of Food Technologies Str. Vladimir, 68, Kiev, Ukraine, 01601

Assistant

Department of Theoretical Mechanics and resource-saving technologies

Александр Александрович Серегин, National University of Food Technologies Str. Vladimir, 68, Kiev, Ukraine, 01601

Doctor of Technical Sciences, Professor, Head of Department

Department of Theoretical Mechanics and resource-saving technologies

References

  1. Богданович, В. П. Перспективы использования альтернативного топлива в сельском хозяйстве [Текст] / В. П. Богданович, Н. В. Шевченко // Техника в сельском хозяйстве. – 2012. – № 5. – С. 38–40.
  2. Каныгин, П. Альтернативная энергетика в ЕС: возможности и пределы [Текст] / П. Каныгин // Экономист. – 2010. – № 1. – С. 49–57.
  3. Перспективы мировой энергетики [Текст]: WEO 2009 // Проблемы окружающей среды и природных ресурсов. – 2010. – № 6. – С. 71–85.
  4. Colechin, M. Best Practice Brochure: Co-Firing of biomass [Теxt] / M. Colechin, A. Malmgren. – Report No: Coal R 287 DTI/Pub, 2005. – 91 p.
  5. Dubrovin, V. Agricultural & environmental engineering for Bioenergy Production [Теxt] / V. Dubrovin, М. Melnychuk // Proceedings of the 33TH CIOSTA & 5TH cigr Conference. – Reggio Colabria. – 2009. – Vol. 2. – P. 1121–1123.
  6. Demirbas, А. Combustion characteristics of different biomass fuels [Теxt] / А. Demirbas // Progress in Energy and Combustion Science. – 2004. – № 30. – P. 219–230.
  7. Koppejan, I. Results from Biomass combustion [Теxt] / I. Koppejan. – SUPERGEN meeting. – Birmingham, 2007. – 35 p.
  8. Harding, S. Biomass as a rebuming fuel: a specialized cofring applications [Теxt] / S. Harding, B. Adams // Biomass and Bioenergy. – 2000. – № 19. – P. 429–445.
  9. Tillman, D. A. Biomass co-firing: the technology, the experience, the combustion consequences [Теxt] / D. A. Tillman // Biomass and Bioenergy. – 2000. – № 19. – P. 365–384.
  10. Baxter-Potential, L. Contributions of biomass towards Sustainable Energy [Теxt]: GCEP Conference / L. Baxter-Potential. – Beijing, China, 2005. – 56 p.
  11. Sami, M., Annamalai, K., Wooldridge, M. Co-firing of coal and Biomass Fuel blends [Теxt] / M. Sami, K. Annamalai, M. Wooldridge. – Progress in Energy and Combustion Science 27, 2001. – 214 p.
  12. Bogdanovich, V., Shevchenko, N. (2012). Prospects for the use of alternative fuels in agriculture. Technology in agriculture, 5, 38–40.
  13. Kanygin, P. (2010). Alternative Energy in the EU: Opportunities and limits. Economist, 1, 49–57.
  14. World Energy Outlook (2010). Problems of the Environment and Natural Resources, 6, 71–85.
  15. Colechin, M., Malmgren, A. (2005). Best Practice Brochure: Co-Firing of biomass. Report No: Coal R 287 DTI/Pub URN, 05/1160, 91.
  16. Dubrovin, V., Melnychuk, М. (2009). Agricultural & environmental engineering for Bioenergy Production. Proceedings of the 33TH CIOSTA & 5TH cigr Conference, 2, 1121–1123.
  17. Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30, 219–230.
  18. Koppejan, I. (2007). Results from Biomass combustion. SUPERGEN meeting, Birmingham, 35.
  19. Harding, S., Adams, B. (2000). Biomass as a rebuming fuel: a specialized cofring applications. Biomass and Bioenergy, 19, 429–445.
  20. Tillman, D. (2000). Biomass co-firing: the technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365–384.
  21. Baxter-Potential, L. (2005). Contributions of biomass towards Sustainable Energy. GCEP Conference, 56.
  22. Sami, M., Annamalai, K., Wooldridge, M. (2001). Co-firing of coal and Biomass Fuel blends. Progress in Energy and Combustion Science, 27, 171–214.

Published

2014-04-22

How to Cite

Осьмак, А. А., & Серегин, А. А. (2014). Plant biomass as organic fuel. Eastern-European Journal of Enterprise Technologies, 2(8(68), 57–61. https://doi.org/10.15587/1729-4061.2014.23394

Issue

Section

Energy-saving technologies and equipment