The effect of cold rolling and high-temperature gas nitriding on austenite phase formation in AISI 430 SS

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.234174

Keywords:

AISI 430 SS, austenite, high-temperature gas nitriding, cold rolling, nitrogen layer

Abstract

Austenitic stainless steel is the most commonly used material in the production of orthopedic prostheses. In this study, AISI 430 SS (0.12 wt. % C; 1 wt. % Si; 1 wt. % Mn; 18 wt. % Cr; 0.04 wt. % P and 0.03 wt. % S) will be modified by creating austenite and removing its ferromagnetic properties via the high-temperature gas nitriding process. Cold rolling with various percentage reduction (30, 50, and 70 %) was followed by gas nitriding at a temperature of 1200 °C with holding times of 5, 7, and 9 hours, then quenching in water was carried out on as-annealed AISI 430 SS. The formation of the austenite phase was examined by XRD (x-ray diffraction). The microstructure and element dispersion were observed using SEM-EDS (scanning electron microscope-energy dispersive spectrometry), whereas the mechanical properties after gas nitriding and water quenching were determined by Vickers microhardness testing. At all stages of the gas nitriding process, the FCC iron indicated the austenite phase was visible on the alloy's surface, although the ferrite phase is still present. The intensity of austenite formation is produced by cold rolling 70 % reduction with a 5-hour gas nitriding time. Furthermore, the nitrogen layer was formed with a maximum thickness layer of approximately 3.14 µm after a 50 % reduction in cold rolling and 9 hours of gas nitriding process followed by water quenching. The hardness reached 600 HVN in this condition. This is due to the distribution of carbon that is concentrated on the surface. As the percent reduction in the cold rolling process increases, the strength of AISI 430 SS after gas nitriding can increase, causing an increase in the number of dislocations. The highest tensile strength and hardness of AISI 430 SS of 669 MPa and 271.83 HVN were obtained with a reduction of 70 %.

Author Biographies

Ika Kartika, Indonesian Institute of Sciences (LIPI)

Doctor of Material Processing, Senior Researcher

Research Center for Metallurgy and Materials

Kevin Kurnia, Sultan Ageng Tirtayasa University

Bachelor of Engineering, Master of Engineering, Junior Researcher

Department of Metallurgy Engineering

Galih Senopati, Indonesian Institute of Sciences (LIPI)

Junior Researcher

Research Center for Metallurgy and Materials

Joko Triwardono, Indonesian Institute of Sciences (LIPI)

Technical Supervisi

Research Center for Metallurgy and Materials

Bambang Hermanto, Indonesian Institute of Sciences (LIPI)

Junior Researcher

Research Center for Physic

Fendy Rokhmanto, Indonesian Institute of Sciences (LIPI)

Junior Researcher

Research Center for Metallurgy and Materials

Made Subekti Dwijaya, Indonesian Institute of Sciences (LIPI)

Junior Researcher

Research Center for Metallurgy and Materials

Alfirano Alfirano, Sultan Ageng Tirtayasa University

Doctor of Material Engineering, Professor

Department of Metallurgy Engineering

References

  1. Sumita, M., Hanawa, T., Teoh, S. H. (2004). Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials – review. Materials Science and Engineering: C, 24 (6-8), 753–760. doi: https://doi.org/10.1016/j.msec.2004.08.030
  2. Sutowo, C., Senopati, G., W Pramono, A., Supriadi, S., Suharno, B. (2020). Microstructures, mechanical properties, and corrosion behavior of novel multi-component Ti-6Mo-6Nb-xSn-xMn alloys for biomedical applications. AIMS Materials Science, 7 (2), 192–202. doi: https://doi.org/10.3934/matersci.2020.2.192
  3. Black, J., Hastings, G. (1998). Handbook of Biomaterial Properties. Springer, 590. doi: https://doi.org/10.1007/978-1-4615-5801-9
  4. Niinomi, M., Nakai, M., Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8 (11), 3888–3903. doi: https://doi.org/10.1016/j.actbio.2012.06.037
  5. Yang, K., Ren, Y. (2010). Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 11 (1), 014105. doi: https://doi.org/10.1088/1468-6996/11/1/014105
  6. Berton, E. M., Neves, J. C. K., Mafra, M., Borges, P. C. (2017). Nitrogen enrichment of AISI 409 stainless steel by solution heat treatment after plasma nitriding. Metallic Materials, 55 (05), 317–321. doi: https://doi.org/10.4149/km_2017_5_317
  7. Li, J., Yang, Y., Ren, Y., Dong, J., Yang, K. (2018). Effect of cold deformation on corrosion fatigue behavior of nickel-free high nitrogen austenitic stainless steel for coronary stent application. Journal of Materials Science & Technology, 34 (4), 660–665. doi: https://doi.org/10.1016/j.jmst.2017.10.002
  8. Mola, J., Ullrich, C., Kuang, B., Rahimi, R., Huang, Q., Rafaja, D., Ritzenhoff, R. (2017). Austenitic Nickel- and Manganese-Free Fe-15Cr-1Mo-0.4N-0.3C Steel: Tensile Behavior and Deformation-Induced Processes between 298 K and 503 K (25 °C and 230 °C). Metallurgical and Materials Transactions A, 48 (3), 1033–1052. doi: https://doi.org/10.1007/s11661-017-3960-x
  9. Aydin, H., Bayram, A., Topçu, Ş. (2013). Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes. Materials Science, 19 (1). doi: https://doi.org/10.5755/j01.ms.19.1.3819
  10. Patnaik, L., Ranjan Maity, S., Kumar, S. (2020). Status of nickel free stainless steel in biomedical field: A review of last 10 years and what else can be done. Materials Today: Proceedings, 26, 638–643. doi: https://doi.org/10.1016/j.matpr.2019.12.205
  11. Talha, M., Behera, C. K., Sinha, O. P. (2013). A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Science and Engineering: C, 33 (7), 3563–3575. doi: https://doi.org/10.1016/j.msec.2013.06.002
  12. Lo, K. H., Shek, C. H., Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65 (4-6), 39–104. doi: https://doi.org/10.1016/j.mser.2009.03.001
  13. Feng, H., Jiang, Z., Li, H., Lu, P., Zhang, S., Zhu, H. et. al. (2018). Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy. Corrosion Science, 144, 288–300. doi: https://doi.org/10.1016/j.corsci.2018.09.002
  14. Kuroda, D., Hanawa, T., Hibaru, T., Kuroda, S., Kobayashi, M., Kobayashi, T. (2003). New Manufacturing Process of Nickel-Free Austenitic Stainless Steel with Nitrogen Absorption Treatment. MATERIALS TRANSACTIONS, 44 (3), 414–420. doi: https://doi.org/10.2320/matertrans.44.414
  15. Zhang, S., Yu, Y., Wang, S., Li, H. (2017). Effects of cerium addition on solidification structure and mechanical properties of 434 ferritic stainless steel. Journal of Rare Earths, 35 (5), 518–524. doi: https://doi.org/10.1016/s1002-0721(17)60942-6
  16. Nakamura, N., Takaki, S. (1996). Structural Control of Stainless Steel by Nitrogen Absorption in Solid State. ISIJ International, 36 (7), 922–926. doi: https://doi.org/10.2355/isijinternational.36.922
  17. Saller, G., Spiradek-Hahn, K., Scheu, C., Clemens, H. (2006). Microstructural evolution of Cr–Mn–N austenitic steels during cold work hardening. Materials Science and Engineering: A, 427 (1-2), 246–254. doi: https://doi.org/10.1016/j.msea.2006.04.020
  18. Kuroda, D., Hanawa, T., Hibaru, T., Kuroda, S., Kobayashi, M. (2003). Mechanical Properties of Thin Wires of Nickel-Free Austenintic Stainless Steel with Nitrogen Absorption Treatment. MATERIALS TRANSACTIONS, 44 (8), 1577–1582. doi: https://doi.org/10.2320/matertrans.44.1577
  19. Kuroda, D., Takemoto, S., Hanawa, T., Asami, K. (2003). Characterization of the Surface Oxide Film on an Fe-Cr-N System Alloy in Environments Simulating the Human Body. MATERIALS TRANSACTIONS, 44 (12), 2664–2670. doi: https://doi.org/10.2320/matertrans.44.2664
  20. Ritzenhoff, R., Hah, A. (2012). Corrosion resistance of High nitrogen steels. Corrosion Resistance. doi: https://doi.org/10.5772/33037
  21. Loder, D., Michelic, S. K., Bernhard, C. (2017). Acicular Ferrite Formation and Its Influencing Factors-A Review. Journal of Materials Science Research, 6 (1), 24. doi: https://doi.org/10.5539/jmsr.v6n1p24
  22. Garcia-Gonzalez, J. E. (2005). Fundamental Study on the Austenite Formation and Decomposition of low-Si, Al added Nb-Mo TRIP steels. University of Pittsburgh, 190. Available at: http://d-scholarship.pitt.edu/6715/
  23. Hedayati, A., Najafizadeh, A., Kermanpur, A., Forouzan, F. (2010). The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. Journal of Materials Processing Technology, 210 (8), 1017–1022. doi: https://doi.org/10.1016/j.jmatprotec.2010.02.010
  24. Hume-Rothery, W. (1966). The structures of Alloys of Iron: An Elementary Introduction. Pergamon. doi: https://doi.org/10.1016/c2013-0-01893-2
  25. Bei, H., Yamamoto, Y., Brady, M. P., Santella, M. L. (2010). Aging effects on the mechanical properties of alumina-forming austenitic stainless steels. Materials Science and Engineering: A, 527 (7-8), 2079–2086. doi: https://doi.org/10.1016/j.msea.2009.11.052
  26. Huang, J., Ye, X., Xu, Z. (2012). Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels. Journal of Iron and Steel Research International, 19 (10), 59–63. doi: https://doi.org/10.1016/s1006-706x(12)60153-8

Downloads

Published

2021-08-26

How to Cite

Kartika, I., Kurnia, K., Senopati, G., Triwardono, J., Hermanto, B., Rokhmanto, F., Dwijaya, M. S., & Alfirano, A. (2021). The effect of cold rolling and high-temperature gas nitriding on austenite phase formation in AISI 430 SS . Eastern-European Journal of Enterprise Technologies, 4(12(112), 25–32. https://doi.org/10.15587/1729-4061.2021.234174

Issue

Section

Materials Science