Development of an algorithm for selecting the required frequency of injected current for multi-frequency electrical impedance tomography for tasksrelated to preoperative monitoring of human lung function

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.234767

Keywords:

multi-frequencyelectrical impedance tomography, selection of injection frequency, information and measuringsystem, fat mass, human lungs

Abstract

This paper proposes an algorithm for selecting the required frequency of injected current for problems of personalized multi-frequency electricalimpedance tomography. The essence of the algorithm is to calculate the rate of change in the recorded difference of potentials for the assigned range of frequencies of injected current, followed by determining the frequency after which the rate of a change in potentials is minimal. Subsequently, the injection parameters are readjusted to the chosen frequency and the complete process of electricalimpedance tomography is started. The proposed solutions were studied on four subjects with different fat mass, defined by bioimpedance analysis. Thus, it seems possible to track the dynamics of a change in the lungs of a certain patient by visualizing the reconstructed conductivity field, taking into consideration its internal features. It was established that in the course of studying lungsby using the method of electricalimpedance tomography, it is necessary to take into account the frequency of injected current at an increase in percentage of fat mass. The results of the studies showing a change in the quality of imaging the breathing process at different frequencies of injected current (from 50 kHz to 400 kHz, with a pitch of 50 kHz) are presented. For the test participants with a fat weight of 7.6 kg, 23.3 kg, 15.2 kg and 37.3 kg, the injection frequency was determined as 150 kHz, 200 kHz, 200 kHz, and 350 kHz, respectively.

The proposed algorithm enables visual monitoring of lung function and can be used in the problems of pre- and postoperative monitoring of respiratory function of patients. Its use is particularly relevant for patients connected to an apparatus of artificial lung ventilation.

Author Biography

Aleksanyan Grayr, Platov South-Russian State Polytechnic University (NPI)

PhD

Department of Information and Measurement Systems and Technologies

References

  1. Abboud, M., Guardo, R., Martineau, R., Taillefer, J., Pelletier, C. (1995). Monitoring of peripheral edema using electrical bioimpedance measurements. Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society. doi: https://doi.org/10.1109/iembs.1995.575290
  2. Pekker, Ya. S., Brazovskiy, K. S., Usov, V. Yu. (2004). Elektroimpedansnaya tomografiya. Tomsk: NTL, 192.
  3. Pomprapa, A., Schwaiberger, D., Pickerodt, P., Tjarks, O., Lachmann, B., Leonhardt, S. (2014). Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography. Critical Care, 18 (3), R128. doi: https://doi.org/10.1186/cc13937
  4. Liu, S., Tan, L., Möller, K., Frerichs, I., Yu, T., Liu, L. et. al. (2016). Identification of regional overdistension, recruitment and cyclic alveolar collapse with electrical impedance tomography in an experimental ARDS model. Critical Care, 20 (1). doi: https://doi.org/10.1186/s13054-016-1300-y
  5. Nestler, C., Simon, P., Petroff, D., Hammermüller, S., Kamrath, D., Wolf, S. et. al. (2017). Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. British Journal of Anaesthesia, 119 (6), 1194–1205. doi: https://doi.org/10.1093/bja/aex192
  6. Buzkova, K., Roubik, K. (2015). The effect of electrode belt size selection upon evaluation of the distribution of ventilation using electrical impedance tomography. 2015 E-Health and Bioengineering Conference (EHB). doi: https://doi.org/10.1109/ehb.2015.7391453
  7. Karsten, J., Stueber, T., Voigt, N., Teschner, E., Heinze, H. (2015). Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Critical Care, 20 (1). doi: https://doi.org/10.1186/s13054-015-1161-9
  8. Blankman, P., Shono, A., Hermans, B. J. M., Wesselius, T., Hasan, D., Gommers, D. (2016). Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. British Journal of Anaesthesia, 116 (6), 862–869. doi: https://doi.org/10.1093/bja/aew116
  9. Cinnella, G., Grasso, S., Raimondo, P., D’Antini, D., Mirabella, L., Rauseo, M., Dambrosio, M. (2015). Physiological Effects of the Open Lung Approach in Patients with Early, Mild, Diffuse Acute Respiratory Distress Syndrome. Anesthesiology, 123 (5), 1113–1121. doi: https://doi.org/10.1097/aln.0000000000000862
  10. Hough, J. L., Shearman, A. D., Liley, H., Grant, C. A., Schibler, A. (2014). Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance tomography. Journal of Paediatrics and Child Health, 50 (11), 884–889. doi: https://doi.org/10.1111/jpc.12661
  11. Gross, B. H., Spizarny, D. L. (1994). Computed Tomography of the Chest in the Intensive Care Unit. Critical Care Clinics, 10 (2), 267–275. doi: https://doi.org/10.1016/s0749-0704(18)30128-3
  12. Adeniji-Sofoluwe, A. T., Adekanmi, A. J., Efidi, R. (2017). Imaging Findings in Chest Computed Tomography: Initial Experience in a Developing Country. Open Journal of Clinical Diagnostics, 07 (04), 113–123. doi: https://doi.org/10.4236/ojcd.2017.74012
  13. Ball, L., Sutherasan, Y., Pelosi, P. (2013). Monitoring respiration: What the clinician needs to know. Best Practice & Research Clinical Anaesthesiology, 27 (2), 209–223. doi: https://doi.org/10.1016/j.bpa.2013.06.004
  14. Ball, L., Vercesi, V., Costantino, F., Chandrapatham, K., Pelosi, P. (2017). Lung imaging: how to get better look inside the lung. Annals of Translational Medicine, 5 (14), 294–294. doi: https://doi.org/10.21037/atm.2017.07.20
  15. Battaglini, D., Robba, C., Rocco, P. R. M., De Abreu, M. G., Pelosi, P., Ball, L. (2019). Perioperative anaesthetic management of patients with or at risk of acute distress respiratory syndrome undergoing emergency surgery. BMC Anesthesiology, 19 (1). doi: https://doi.org/10.1186/s12871-019-0804-9
  16. Białka, S., Copik, M., Rybczyk, K., Misiołek, H. (2017). Electrical impedance tomography for diagnosis and monitoring of pulmonary function disorders in the intensive care unit — case report and review of literature. Anaesthesiology intensive therapy, 49 (3), 222–226. doi: https://doi.org/10.5603/ait.2017.0040
  17. Bachmann, M. C., Morais, C., Bugedo, G., Bruhn, A., Morales, A., Borges, J. B. et. al. (2018). Electrical impedance tomography in acute respiratory distress syndrome. Critical Care, 22 (1). doi: https://doi.org/10.1186/s13054-018-2195-6
  18. Frerichs, I., Pulletz, S., Elke, G., Gawelczyk, B., Frerichs, A., Weiler, N. (2011). Patient examinations using electrical impedance tomography—sources of interference in the intensive care unit. Physiological Measurement, 32 (12), L1–L10. doi: https://doi.org/10.1088/0967-3334/32/12/f01
  19. Schaefer, M. S., Wania, V., Bastin, B., Schmalz, U., Kienbaum, P., Beiderlinden, M., Treschan, T. A. (2014). Electrical impedance tomography during major open upper abdominal surgery: a pilot-study. BMC Anesthesiology, 14 (1). doi: https://doi.org/10.1186/1471-2253-14-51
  20. Jang, G. Y., Ayoub, G., Kim, Y. E., Oh, T. I., Chung, C. R., Suh, G. Y., Woo, E. J. (2019). Integrated EIT system for functional lung ventilation imaging. BioMedical Engineering OnLine, 18 (1). doi: https://doi.org/10.1186/s12938-019-0701-y
  21. Shono, A., Kotani, T. (2019). Clinical implication of monitoring regional ventilation using electrical impedance tomography. Journal of Intensive Care, 7 (1). doi: https://doi.org/10.1186/s40560-019-0358-4
  22. Ward, L. C. (2018). Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition, 73 (2), 194–199. doi: https://doi.org/10.1038/s41430-018-0335-3
  23. Shchelykalina, S. P., Nikolaev, D. V., Kolesnikov, V. A., Korostylev, K. A., Starunova, O. A. (2020). Data Views Technology of Bioimpedance Vector Analysis of Human Body Composition. 17th International Conference on Electrical Bioimpedance, 77–83. doi: https://doi.org/10.1007/978-981-13-3498-6_12
  24. Nikolaev, D. V., Schelykalina, S. P. (2016). Lektsii po bioimpedansnomu analizu sostava tela cheloveka. Moscow: RIO TSNIIOIZ MZ RF, 152.
  25. Martirosov, E. G., Nikolaev, D. V., Rudnev, S. G. (2006). Tekhnologii i metody opredeleniya sostava tela cheloveka. Moscow: Nauka, 248.
  26. Nikolaev, D. V., Smirnov, A. V., Bobrinskaya, I. G., Rudnev, S. G. (2009). Bioimpedansniy analiz sostava tela cheloveka. Moscow: Nauka, 392.

Downloads

Published

2021-06-25

How to Cite

Grayr, A. (2021). Development of an algorithm for selecting the required frequency of injected current for multi-frequency electrical impedance tomography for tasksrelated to preoperative monitoring of human lung function. Eastern-European Journal of Enterprise Technologies, 3(5 (111), 25–38. https://doi.org/10.15587/1729-4061.2021.234767

Issue

Section

Applied physics