Advancing the multifactor model of Stochastic Frontier Analysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235316

Keywords:

multifactor model, efficiency, stochastic method, bankruptcy, financial stability, panel data

Abstract

The concept of efficiency is important in economic science; at present, its role in every sector of the economy is growing. Evaluating an enterprise’s efficiency makes it possible to implement a correct and profitable strategy of resource allocation, which shows its potential level Given an annual increase in the number of bankrupt enterprises, the issue of estimating the efficiency of enterprises is relevant for both their owners and managers, as well as for creditors. There are various methods and models for estimating the performance of enterprises. This work has assessed the efficiency of enterprises in the industrial sector over the period of 2017‒2018. Stochastic Frontier Analysis is based on the stochastic model of production function. The classic SFA method is based on the production function of the company, which relates the volume of output to the volume of resources consumed. At the same time, the SFA model uses several inputs (volumes of resources consumed) and only one output parameter ‒ the volume of production.

In order to achieve more precise results, a given model has been modified. The model allows several key financial indicators to be taken into consideration as outputs at the same time, based on which the financial activities of the studied economic entities are assessed. The result of the work involving open sources has revealed how the efficiency of different enterprises in the same industry changes over several years. It is shown that the modified Stochastic Frontier Analysis model could be used to assess financial stability and predict bankruptcy.

Supporting Agency

  • Работа подготовлена при финансовой поддержке гранта РФФИ (проект № 20-31-90100).

Author Biographies

Arthur Mitsel, Tomsk State University of Control Systems and Radioelectronics; Tomsk Polytechnic University

Doctor of Technical Sciences, Professor

Department of Automated Control Systems

Department of Digital Technologies and Experimental Physics

Aliya Alimkhanova, Tomsk State University of Control Systems and Radioelectronics

Postgraduate Student

Department of Automated Control Systems

Marina Grigorieva, Tomsk State University of Control Systems and Radioelectronics

PhD, Associate Professor

Department of Automated Control Systems

References

  1. Federal'niy zakon "O nesostoyatel'nosti (bankrotstve)" ot 26.10.2002 No. 127-FZ (poslednyaya redaktsiya). Konsul'tantPlyus. Available at: http://www.consultant.ru/document/cons_doc_LAW_39331/
  2. Dannye sudebnoy statistiki. Judicial Department at the Supreme Court of the Russian Federation. Available at: http://www.cdep.ru/index.php?id=79
  3. Rezul'taty protsedur v delah o bankrotstve za 2020 god (2021). Fedresurs. Available at: https://fedresurs.ru/news/05826cfd-c758-4d05-8b43-5db1686c5973?attempt=1
  4. Altman, E., Hotchkiss, E. (2005). Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt. John Wiley & Sons. doi: https://doi.org/10.1002/9781118267806
  5. Beaver, W. H. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4, 71. doi: https://doi.org/10.2307/2490171
  6. Ahmadpour Kasgari, A., Divsalar, M., Javid, M. R., Ebrahimian, S. J. (2012). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications, 23 (3-4), 927–936. doi: https://doi.org/10.1007/s00521-012-1017-z
  7. Gordini, N. (2014). A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy. Expert Systems with Applications, 41 (14), 6433–6445. doi: https://doi.org/10.1016/j.eswa.2014.04.026
  8. Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications, 117, 287–299. doi: https://doi.org/10.1016/j.eswa.2018.09.039
  9. Lovell, C. A. K., Fried, H., Schmidt, S. (Eds.) (1990). The Measurement of Productive Efficiency: Techniques and Applications. Oxford University Press, 3–67.
  10. Greene, W. H. (1990). A Gamma-distributed stochastic frontier model. Journal of Econometrics, 46 (1-2), 141–163. doi: https://doi.org/10.1016/0304-4076(90)90052-u
  11. Battese, G. E., Coelli, T. J. (1992). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3 (1-2), 153–169. doi: https://doi.org/10.1007/bf00158774
  12. Eling, M., Luhnen, M. (2010). Efficiency in the international insurance industry: A cross-country comparison. Journal of Banking & Finance, 34 (7), 1497–1509. doi: https://doi.org/10.1016/j.jbankfin.2009.08.026
  13. Borisova, E. I., Peresetskiy, A. A., Polischuk, L. I. (2010). Analiz effektivnosti nekommercheskih assotsiatsiy metodom stohasticheskoy granitsy (na primere tovarischestv sobstvennikov zhil'ya). Prikladnaya ekonometrika, 4 (20), 75–101.
  14. Malahov, D. I., Pil'nik, N. P. (2013). Metody otsenki pokazateley effektivnosti v modelyah stohasticheskoy proizvodstvennoy granitsy. Ekonomicheskiy zhurnal VSHE, 17 (4), 660–686.
  15. Afanas'ev, M. Yu. (2006). Model' proizvodstvennogo potentsiala s upravlyaemymi faktorami neeffektivnosti. Prikladnaya ekonometrika, 4 (4), 74–89.
  16. Ayvazyan, S. A., Afanas'ev, M. Yu., Rudenko, V. A., (2014). Otsenka effektivnosti regionov RF na osnove modeli proizvodstvennogo potentsiala s harakteristikami gotovnosti k innovatsiyam. Zhurnal Ekonomika i matematicheskie metody (EMM), 50 (4), 34–70. Available at: https://ideas.repec.org/a/scn/cememm/v50y2014i4p34-70.html
  17. Mogilat, A., Ipatova, I. (2016). Technical efficiency as a factor of Russian industrial companies' risks of financial distress. Applied Econometrics, 42, 5–29.
  18. Galluzzo, N. (2020). A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis. European Countryside, 12 (4), 494–505. doi: https://doi.org/10.2478/euco-2020-0026
  19. Wanke, P., Tsionas, M. G., Chen, Z., Moreira Antunes, J. J. (2020). Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. International Review of Economics & Finance, 69, 456–468. doi: https://doi.org/10.1016/j.iref.2020.06.002
  20. Moutinho, V., Madaleno, M., Macedo, P. (2020). The effect of urban air pollutants in Germany: eco-efficiency analysis through fractional regression models applied after DEA and SFA efficiency predictions. Sustainable Cities and Society, 59, 102204. doi: https://doi.org/10.1016/j.scs.2020.102204
  21. Lafta, A. (2020). Measuring the economic efficiency and total productivity of resource and the technical change of agricultural companies in iraq using sfa and dea for the period 2005-2017. Iraqi Journal of Agricultural Sciences, 51 (4), 1104–1117. doi: https://doi.org/10.36103/ijas.v51i4.1089
  22. Gupta, K., Raman, T. V. (2020). The nexus of intellectual capital and operational efficiency: the case of Indian financial system. Journal of Business Economics, 91 (3), 283–302. doi: https://doi.org/10.1007/s11573-020-00998-8
  23. Odeck, J., Schøyen, H. (2020). Productivity and convergence in Norwegian container seaports: An SFA-based Malmquist productivity index approach. Transportation Research Part A: Policy and Practice, 137, 222–239. doi: https://doi.org/10.1016/j.tra.2020.05.001
  24. Chen, J., Wu, Y., Song, M., Zhu, Z. (2017). Stochastic frontier analysis of productive efficiency in China's Forestry Industry. Journal of Forest Economics, 28, 87–95. doi: https://doi.org/10.1016/j.jfe.2017.05.005
  25. Ghosh, R., Kathuria, V. (2016). The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis. Energy Policy, 89, 11–24. doi: https://doi.org/10.1016/j.enpol.2015.11.011
  26. Margono, H., Sharma, S. C., Melvin, P. D. (2010). Cost efficiency, economies of scale, technological progress and productivity in Indonesian banks. Journal of Asian Economics, 21 (1), 53–65. doi: https://doi.org/10.1016/j.asieco.2009.06.001
  27. Tovar, B., Javier Ramos-Real, F., de Almeida, E. F. (2011). Firm size and productivity. Evidence from the electricity distribution industry in Brazil. Energy Policy, 39 (2), 826–833. doi: https://doi.org/10.1016/j.enpol.2010.11.001
  28. Liu, T., Li, K.-W. (2012). Analyzing China's productivity growth: Evidence from manufacturing industries. Economic Systems, 36 (4), 531–551. doi: https://doi.org/10.1016/j.ecosys.2012.03.003
  29. Nguyen, P. H., Pham, D. T. B. (2020). The cost efficiency of Vietnamese banks – the difference between DEA and SFA. Journal of Economics and Development, 22 (2), 209–227. doi: https://doi.org/10.1108/jed-12-2019-0075
  30. Fiorentino, E., Karmann, A., Koetter, M. (2006). The Cost Efficiency of German Banks: A Comparison of SFA and DEA. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.947340
  31. Yang, S., Wang, H., Tong, J., Ma, J., Zhang, F., Wu, S. (2020). Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization. Water, 12 (10), 2691. doi: https://doi.org/10.3390/w12102691
  32. Coelli, T., Rao, D. S. P., Battese, G. E. (1998). An introduction to efficiency and productivity analysis. Springer, 276. doi: https://doi.org/10.1007/978-1-4615-5493-6
  33. Battese, G. E., Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 38 (3), 387–399. doi: https://doi.org/10.1016/0304-4076(88)90053-x
  34. Jondrow, J., Knox Lovell, C. A., Materov, I. S., Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19 (2-3), 233–238. doi: https://doi.org/10.1016/0304-4076(82)90004-5
  35. Malakhov, D., Pilnik, N. (2013). Methods of Estimating of the Efficiency in Stochastic Frontier Models. Ekonomicheskii zhurnal VSE, 17 (4), 660–686.

Downloads

Published

2021-06-29

How to Cite

Mitsel, A., Alimkhanova, A., & Grigorieva, M. (2021). Advancing the multifactor model of Stochastic Frontier Analysis . Eastern-European Journal of Enterprise Technologies, 3(4 (111), 58–64. https://doi.org/10.15587/1729-4061.2021.235316

Issue

Section

Mathematics and Cybernetics - applied aspects