Building an analytical model of the gravitational grain movement in an open screw channel with variable inclination angles

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235451

Keywords:

grain movement speed, screw channel, variable angles of inclination, injury

Abstract

Existing technical means for loading silos with grain material do not fully meet the needs of production. The issue related to grain injury remains urgent, which predetermines the need to design a gravitational loader of another principle of operation with the appropriate theoretical justification for the movement of grain material in it. This paper has presented and substantiated the model of the gravitational movement of grain in the peripheral open screw channel with two variable angles of inclination. The model is based on the system of forces in the cylindrical coordinate system, acting on the volume of grain flow in the peripheral screw channel. The grain speed at the end of the braking section of the channel should be as low as possible but not less than the initial flow rate at the beginning of the acceleration section. The model takes into consideration this condition and ensures the optimal passage of grain along any part of the channel.

The reported model makes it possible to obtain the speed of grain movement at any time, takes into consideration the height of the bunker hole and the dependence between the angles of inclination of the spirals of acceleration and brake sections. A mathematical dependence is given for these angles that ensures the passage of grain without its discharge and, at the same time, prevents injury to the grain mass due to a controlled decrease in the resulting speed. A separate dependence is provided to find the time at which the grain increases its speed on the acceleration section, reaching the maximum value.

Based on the model, a peripheral open screw channel with two angles of inclination of spirals α and β has been proposed. For this channel, the relationships between its key parameters have been established, in particular, values have been substantiated for the recommended angles of 41°…45° for the acceleration section and 39°…35° for the brake section, respectively, as well as the hо/r ratio not less than 0.6...0.7.

Author Biographies

Volodymyr Arendarenko, Poltava State Agrarian Academy

PhD, Associate Professor

Department of Technologies and Equipment of Processing And Food Productions

Anatoliі Antonets, Poltava State Agrarian Academy

PhD, Associate Professor

Department of General Technical Disciplines

Oleg Ivanov, Poltava State Agrarian Academy

PhD, Associate Professor

Department of Technologies and Equipment of Processing And Food Productions

Ihor Dudnikov, Poltava State Agrarian Academy

PhD, Associate Professor

Department of Sectoral Mechanical Engineering

Tetiana Samoylenko, Company «Tayfun»

Engineer

References

  1. Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X. et. al. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1 (1), 43–49. doi: https://doi.org/10.1016/j.cj.2013.07.012
  2. Komchenko, E. V., Basyuk, S. P. (2003). Vliyanie materiala stenok bunkera na istechenie razlichnyh sypuchih materialov. Energosberezhenie i energosberegayuschie tekhnologii v APK, 1, 145–149.
  3. Goryushinskiy, I. V., Mosina, N. N. (2001). K voprosu otsenki protsessa zagruzki emkostey sypuchimi materialami. Sbornik nauchnyh trudov studentov, aspirantov i molodyh uchenyh SamIIT, 3, 83–84.
  4. Arendarenko, V. M., Antonets, A. V., Savchenko, N. K., Samoilenko, T. V., Ivanov, O. M. (2020). Calculation model of grain gravitation movement in sloping passage with discrete variable inclination angle. Bulletin of Poltava State Agrarian Academy, 4, 273–282. doi: https://doi.org/10.31210/visnyk2020.04.35
  5. Samoilenko, T. V., Arendarenko, V. M., Antonets, A. V. (2020). Kinematics of grain movement on a spiral device with variable angle of descent. Bulletin of Poltava State Agrarian Academy, 1, 267–274. doi: https://doi.org/10.31210/visnyk2020.01.31
  6. Goryushinskiy, I. V., Mosina, N. N. (2003). Povyshenie kachestva funktsionirovaniya bunkernyh hranilisch uluchsheniem ih zagruzki. Puti povysheniya effektivnosti APK v usloviyah vstupleniya Rossii v VTO. Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii (k XIII mezhdunarodnoy spetsializirovannoy vystavke «AGRO-2003»), 343–345.
  7. Tarasenko, A. P., Orobinskiy, V. I., Gievskiy, A. M., Baskakov, I. V., Chernyshov, A. V., Haritonov, M. K. (2019). Snizhenie travmirovaniya zerna pri posleuborochnoy obrabotke. Vestnik agrarnoy nauki Dona, 1, 63–68. Available at: https://readera.org/140243652
  8. Tarasenko, A. P., Orobinskiy, V. I., Gievskiy, A. M., Merchalova, M. E. (2012). Sovershenstvovanie sredstv mekhanizatsii dlya polucheniya kachestvennogo zerna. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universitet, 3, 109–115.
  9. Zharkikh, V. U., Tarasenko, A. P. (2015). Overview of technical solutions for even loading of grain cleaners. Nauchno-issledovatel'skie publikatsii, 1 (3 (23)), 76–81. Available at: https://cyberleninka.ru/article/n/obzor-tehnicheskih-resheniy-dlya-ravnomernoy-zagruzki-zernoochistitelnyh-mashin/viewer
  10. Strona, I. G. (1974). Travmirovaniya semyan zernovyh kul'tur i urozhaev. Biologiya i tekhnologiya semyan, 2, 122–129.
  11. Chazov, S. A., Shelyapen', P. A., Votskiy, Z. Z. (1981). Travmirovaniya semyan i puti snizheniya pri mekhanizirovannoy obrabotke, obmolote, sortirovanii. Ukrainskie nivy, 8, 41–43.
  12. Derev’ianko, D., Sukmaniuk, O., Sarana, V., Derev’ianko, O. (2020). Justification of influence of the working bodies of combine harvesters on damage and quality of seed. Bulletin of Agricultural Science, 92 (2), 64–71. doi: https://doi.org/10.31073/agrovisnyk202002-10
  13. Cherniy, A. S. (1973). Puti snizheniya povrezhdaemosti semyan pri rabote zernovoy norii NZ-20. Trudy ChIMESKh, 62, 270–275.
  14. Kupreenko, A. I., Isaev, Kh. M., Bychkov, I. E. (2019). Improving the efficiency of loading of tanks for agricultural purposes. Konstruirovanie, ispol'zovanie i nadezhnost' mashin sel'skohozyaystvennogo naznacheniya, 1 (18), 462–469.
  15. Fraczek, J., Ślipek, Z. (1999). Fatigue strength of wheat grains. Part 1. The analysis of grain deformation at multiple loads. International Agrophysics, 13 (1), 93–97. Available at: http://www.international-agrophysics.org/Fatigue-strength-of-wheat-grains-Part-1-The-analysis-of-grain-deformation-at-multiple,106935,0,2.html
  16. Omarov, A., Müller, P., Tomas, J. (2013). Influence of loading rate on the deformation and fracture behavior of wheat grains. Chemie Ingenieur Technik, 85 (6), 907–913. doi: https://doi.org/10.1002/cite.201200054
  17. Borshchev, V. Ya., Dolgunin, V. N. (2006). Characteristics of Raped Shear Flow and Recommendations for Production Process. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 12 (2A), 401–407. Available at: https://cyberleninka.ru/article/n/harakteristiki-sdvigovogo-potoka-zernistoy-sredy-i-rekomendatsii-po-organizatsii-tehnologicheskih-protsessov/viewer
  18. Dolgunin, V. N., Borschev, V. Ya. (2006). Bystrye gravitatsionnye techeniya zernistyh materialov: tekhnika izmereniya, zakonomernosti, tekhnologicheskoe primenenie. Moscow: Mashinostroenie.
  19. Sevidzh, S. (1985). Gravitatsionnoe techenie nesvyazannyh granulirovannyh materialov v lotkah i kanalah. Mekhanika granulirovannyh sred: Teoriya bystryh dvizheniy. Moscow: Mir, 86–146.
  20. Leuthe, F., Eisenhauer, N., Hofmann, B., Maier, M., Roth, K. (2017). The movement of a dune of non-uniform grain size in a circular pipe flow. 18th International Conferences on Transport and Sedimentation of Solid Particles, 185–192.
  21. Melnik, V. I., Samojlenko, T. V. (2018). Analysis of directions for improving the design of devices for loading silos. Engineering of nature management, 1 (9), 83–90. Available at: http://nbuv.gov.ua/UJRN/Iprk_2018_1_13
  22. Dancey, C. L., Diplas, P., Papanicolaou, A., Bala, M. (2002). Probability of Individual Grain Movement and Threshold Condition. Journal of Hydraulic Engineering, 128 (12), 1069–1075. doi: https://doi.org/10.1061/(asce)0733-9429(2002)128:12(1069)
  23. Pylypaka, S., Nesvidomin, V., Zaharova, T., Pavlenko, O., Klendiy, M. (2019). The Investigation of Particle Movement on a Helical Surface. Advances in Design, Simulation and Manufacturing II, 671–681. doi: https://doi.org/10.1007/978-3-030-22365-6_67
  24. Ren, J.-L., Zhou, J.-N., Han, L., Hu, Y.-J. (2018). Analysis of the Law Governing the Movement of Bulk Materials in a Vertical Helical Conveyer. Reneng Dongli Gongcheng/Journal of Engineering for Thermal Energy and Power, 33 (6), 77–82. doi: https://doi.org/10.16146/j.cnki.rndlgc.2018.06.013
  25. Borshchev, V. Ya., Dolgunin, V. N., Dronova, M. Yu. (2005). Cascade Gravity Separation of Particulate Solids: Technological Peculiarities and Mathematical Modeling. Vestnik TGTU, 4, 903–909. Available at: https://cyberleninka.ru/article/n/kaskadnaya-gravitatsionnaya-separatsiya-zernistyh-materialov-osobennosti-tehnologii-i-modelirovanie/viewer
  26. Antipov, S. T., Zhuravlev, A. V., Nesterov, D. A. (2015). Mathematical motion simulation of millet grains in the drying device with weighed-twisted layer. Tekhnologii pischevoy i pererabatyvayuschey promyshlennosti APK – produkty zdorovogo pitaniya, 4, 46–53. Available at: https://cyberleninka.ru/article/n/matematicheskoe-modelirovanie-dvizheniya-zerna-prosa-v-sushilnom-apparate-so-vzveshenno-zakruchennym-sloem/viewer
  27. Negi, S. C., Lu, Z., Jofriet, J. C. (1997). A Numerical Model for Flow of Granular Materials in Silos. Part 2: Model Validation. Journal of Agricultural Engineering Research, 68 (3), 231–236. doi: https://doi.org/10.1006/jaer.1997.0197
  28. Ukolov, A., Dolgunin, V., Romaanof, A., Klimov, A. (2001). Gravity separation technology of particulate materials of high uniformity. International Conference on Practical Aspects Technology, 215–218.
  29. Shatskiy, V. P., Orobinskiy, V. I., Popov, A. E. (2015). Modelirovanie dvizheniya zernovogo potoka v gravitatsionnom separatore. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 4, (47), 72–79. Available at: http://vestnik.vsau.ru/wp-content/uploads/2015/11/72-79.pdf
  30. Morozov, I. V., Dudin, O. V. (2003). Model traiektoriyi rukhu zerna po poverkhniakh silskohospodarskykh mashyn. Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva «Mekhanizatsiya silskohospodarskoho vyrobnytstva», 21, 124–131.
  31. Hevko, B. M. (2012). Matematychna model rukhu zerna po rukhomym poverkhniam vysivnykh aparativ. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Tekhnichni nauky, 1 (11), 113–118.
  32. Lezhenkin, О., Holovlov, V., Mikhailenko, О., Rubtsov, М. (2019). Mathematical model of the movement of the combed grain heap after stripper harvesting modulein the air flow. Proceedings of the Tavria State agrotechnological university, 19 (3), 14–21. Available at: http://oj.tsatu.edu.ua/index.php/pratsi/article/view/236
  33. Naumenko, М. M., Sokol, S. P., Filipenko, D. V., Guridova, V. A. (2017). Mathematical model of the grain mix in a cylindrical grid rotating around the axis. Heotekhnichna mekhanika, 133, 250–256.

Downloads

Published

2021-07-01

How to Cite

Arendarenko, V., Antonets, A., Ivanov, O., Dudnikov, I., & Samoylenko, T. (2021). Building an analytical model of the gravitational grain movement in an open screw channel with variable inclination angles. Eastern-European Journal of Enterprise Technologies, 3(7 (111), 100–112. https://doi.org/10.15587/1729-4061.2021.235451

Issue

Section

Applied mechanics