Methodological features in research of pool boiling processes of nanofluid isopropanol/Al2O3
DOI:
https://doi.org/10.15587/1729-4061.2014.23553Keywords:
boiling, heat-transfer coefficient, nanofluid, stability, hydrodynamic radius, concentrationAbstract
Promising direction of heat-transfer intensification is modification of the liquids used as coolants or working bodies for various kinds of equipment. Within this framework the usage of nanofluids (suspensions of nano-size particles (up to 100 nm) in a base fluid) is proposed.
The results obtained have shown that the additive of Al2O3 nanoparticles to isopropanol increases the heat transfer coefficient during pool boiling up to 10–26 %. However, such effect was found only at the low heat flux densities. At the high heat flux densities the presence of the nanoparticles in isopropanol leads to decreasing the heat-transfer coefficient. According to the authors, this is the result of nanofluid destabilization. It is shown that the complex nature of nanoparticles Al2O3 effect on the changes in heat-transfer coefficient is related to a combined contribution of different factors: interaction of nanoparticles with heating surfaces, changing in thermal properties of nanofluids compared to the base fluid, hydrodynamic radius of nanoparticles and their concentration in isopropanol.
According to the authors, the possible reason of nanofluid destabilization during pool boiling may be the destruction of heterogeneous micelles on the heater surface. Therefore, the study of nanofluids pool boiling and correct interpretation of the collected data should consider the stability, concentration changes of nanofluid and heating surface properties. The study on hydrodynamic radius of nanoparticles was carried out using experimental setup wherein DLS method has been realized. The results has shown increasing in hydrodynamic radius from 53 to 86 nm with an increasing in the mass fraction of nanoparticles from 0.036 to 4.2 wt. %.
The experiments to determine the stability of nanofluid has shown that the system remains stable throughout the period of the experiment (100 hours), temperatures interval (20–70 °C) and the mass fraction of nanoparticles (0.036–4.2 wt.%). In addition, in this paper, the dependence of the mass fraction of Al2O3 nanoparticles in isopropanol on the value of the transmitted light through the nanofluid was obtained. The magnitude of the transmitted through the nanofluid light is proportional to the mass fraction of nanoparticles.
References
- Duncan, A. B. Review of Microscale Heat Transfer [Text] /A. B. Duncan, G. P. Peterson // Appl Mech Rev. – 1994 – Vol. 47(9). – P. 397–428.
- Majumdar, A. Microscale energy transport in solids. In “Microscale Energy Transport” [Text] / C. L. Tien, A. Majumdar, F. Gerner, eds. – Taylor & Francis. – Washington, DC, USA, 1998. – 94 p.
- Naphon, P. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency [Text] / P. Naphon, P. Assadamongkol, T. Bororak // Int Commun Heat Mass Transfer. – 2008. – Vol. 35. – P. 1316–1319.
- Huminic, G. Heat transfer characteristics of a two-phase closed thermosyphons using nanolfuids [Text] / G. Huminic, A. Huminic // Exp Thermal Fluid Sci. – 2011. – Vol. 35. – P. 550–557.
- Nikitin, D. Surface tension, viscosity, and thermal conductivity of nanolubricants and vapor pressure of refrigerant/nanolubricant mixtures [Text] / D. Nikitin, V. Zhelezny, V. Grusko, D. Ivchenko // Estern-European Journal of Enterprise Technologies. – 2012. – Vol. 5, № 5 (59). – P. 12–17.
- Pak, B. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [Text] / B. Pak, Y. Cho // Exp Heat Transf. – 1998. – Vol. 11(2). – P. 151–170.
- Wen, D. Formulation of nanofluids for natural convective heat transfer applications [Text] / D. Wen, Y. Ding // Int J of Heat and Fluid Flow. – 2005. – Vol. 26(8). – P. 55–64.
- Trisaksri, V. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids [Text] / V. Trisaksri, S. Wongwises // Int J Heat Mass Transf. – 2009. – Vol. 52. – P. 1582–1588.
- Yang, C. Y. Effect of nano-particles for pool boiling heat transfer of refrigerant R141b on horizontal tubes [Text] / C. Y. Yang, D.W. Liu // Int J Microscale Nanoscale Thermal Fluid Transport Phenomena. – 2010. – Vol. 1 (3). – P. 233–243.
- You, S. M. Effect of nanoparticles on critical heat flux of water in pool-boiling heat transfer [Text] / S. M. You, J. H. Kim, K. H. Kim // Appl Phys Lett. –2003. – Vol. 83. – P. 3374–3376.
- Kwark, S. M. Pool boiling characteristics of low concentration nanofluids [Text] / S. M. Kwark, R. Kumar, G. Moreno // Int J Heat Mass Transf. – 2010. – Vol. 53. – P. 972–981.
- Choi, C. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants [Text] / C. Choi, H. S. Yoo, J. M. Oh // Current Appl Phys. – 2008. – Vol. 8. – P. 710–712.
- Никулин, А. Г. Экспериментальная установка для исследования процессов кипения чистых жидкостей и растворов в свободном объеме [Текст] / А. Г. Никулин, Ю. В. Семенюк, Н. Н. Лукьянов // Холодильная техника и технология. – 2013. – T. 4 (144). – С. 12–18.
- Kedzierski, M. A. Effect of CuO nanolubricant on R134a pool boiling heat transfer [Text] / M. A. Kedzierski, M. Gong // Int J Refrig. – 2009. – Vol. 32. – P. 791–799.
- Utomo, Adi T. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids [Text] / T. Utomo Adi, H. Poth, Phillip T. Robbins, Andrzej W. Pacek // Int J Heat Mass Transf. – 2012. – Vol. 55. – P. 7772–7781.
- Ахманов, С. А. Введение в статистическую радиофизику и оптику [Текст] / С. А. Ахманов, Ю. Е. Дьяков, А. С. Чиркин. – М.: Наука, 1981. – 640 с.
- Cummins, H. Z. Photon correlation and light beating spectroscopy [Text] / H. Z. Cummins, E. R. Pike. – England: Great Malvern, Royal Radar Establishment, 1974. – 583 p.
- Заремба, В. Г. Визначення моментів старших кореляційних функцій електромагнітних полів при одноточковій реєстрації [Текст] / В. Г. Заремба, Г. І. Салістра, В. Я. Гоцульський, В. Е. Чечко // УФЖ. – 1995. – Т. 40(6). – С. 638–639.
- Duncan, A. B., Peterson, G. P. (1994). Review of Microscale Heat Transfer. Appl Mech Rev, 47(9), 397–428.
- Majumdar, A. C., Tien, L., Majumdar, A., Gerner, F. (1998). Taylor & Francis. Microscale energy transport in solids. In “Microscale Energy Transport”. Washington, DC, USA, 94.
- Naphon, P., Assadamongkol, P., Bororak, T. (2008). Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Commun Heat Mass. Transfe, 35, 1316–1319.
- Huminic, G., Huminic, A. (2011). Heat transfer characteristics of a two-phase closed thermosyphons using nanolfuids. Exp Thermal Fluid Sci, 35, 550–557.
- Nikitin, D., Zhelezny, V., Grusko, V., Ivchenko, D. (2012). Surface tension, viscosity, and thermal conductivity of nanolubricants and vapor pressure of refrigerant/nanolubricant mixtures. Eastern-European Journal of Enterprise Technologies, Vol. 5, № 5 (59), 12–17.
- Pak, B., Cho, Y. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf, 11(2), 151–170.
- Wen, D, Ding, Y. (2005). Formulation of nanofluids for natural convective heat transfer applications. Int J of Heat and Fluid Flow, 26 (8), 55–64.
- Trisaksri, V., Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. Int J Heat Mass. Transf, 52, 1582–1588.
- Yang, C. Y., Liu, D. W. (2010). Effect of nano-particles for pool boiling heat transfer of refrigerant 141B on horizontal tubes. Int J Microscale Nanoscale Thermal Fluid Transport Phenomena, 1(3), 233–243.
- You, S. M., Kim, J. H., Kim, K. H. (2003). Effect of nanoparticles on critical heat flux of water in pool-boiling heat transfer. Appl Phys Lett, 83, 3374–3376.
- Kwark, S. M., Kumar, R., Moreno, G. (2010). Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf, 53, 972–981.
- Choi, C., Yoo, H. S., Oh, J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Appl Phys, 8, 710–712.
- Nikulin, A. G., Semenjuk, Ju. V., Luk’janov, N. N. (2013). Jeksperimental’naja ustanovka dlja issledovanija processov kipenija chistyh zhidkostej i rastvorov v svobodnom obeme. Holodil’naja tehnika i tehnologija, 4 (144), 12–18.
- Kedzierski, M. A., Gong, M. (2009). Effect of CuO nanolubricant on R134a pool boiling heat transfer. Int J Refrig, 32, 791–799.
- Utomo, Adi T., Poth, H., Robbins, T. Phillip., Andrzej, W. Pacek (2012). Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf, 55, 7772–7781.
- Akhmanov, S. A., Dyakov, Yu. Ye., Chirkin, A. S. (1981). Introduction to Statistical Radiophysics and Optics, Nauka, Moscow, USSR, 640.
- Cummins, H. Z., Pike, E. R. (1974). Photon correlation and light beating spectroscopy, Royal Radar Establishment, Great Malvern, England, 583.
- Zaremba, V. G., Salistra, G. I., Gotsulsky, V. Ya., Chechko, V. E. (1995). Single-point registration method for determination higher order correlation functions moments, Ukr J Phys., 40 (6), 638–639.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Виталий Петрович Железный, Юрий Владимирович Семенюк, Владимир Яковлевич Гоцульский, Артем Геннадьевич Никулин, Николай Александрович Шимчук, Николай Николаевич Лукьянов
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.