Methodological features in research of pool boiling processes of nanofluid isopropanol/Al2O3

Authors

  • Виталий Петрович Железный Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine https://orcid.org/0000-0002-0987-1561
  • Юрий Владимирович Семенюк Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine
  • Владимир Яковлевич Гоцульский Odessa Mechnikov national university, Pastera str., 42, Odessa, Ukraine, 65023, Ukraine
  • Артем Геннадьевич Никулин Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine
  • Николай Александрович Шимчук Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine
  • Николай Николаевич Лукьянов Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.23553

Keywords:

boiling, heat-transfer coefficient, nanofluid, stability, hydrodynamic radius, concentration

Abstract

Promising direction of heat-transfer intensification is modification of the liquids used as coolants or working bodies for various kinds of equipment. Within this framework the usage of nanofluids (suspensions of nano-size particles (up to 100 nm) in a base fluid) is proposed.

The results obtained have shown that the additive of Al2O3 nanoparticles to isopropanol increases the heat transfer coefficient during pool boiling up to 10–26 %. However, such effect was found only at the low heat flux densities. At the high heat flux densities the presence of the nanoparticles in isopropanol leads to decreasing the heat-transfer coefficient. According to the authors, this is the result of nanofluid destabilization. It is shown that the complex nature of nanoparticles Al2O3 effect on the changes in heat-transfer coefficient is related to a combined contribution of different factors: interaction of nanoparticles with heating surfaces, changing in thermal properties of nanofluids compared to the base fluid, hydrodynamic radius of nanoparticles and their concentration in isopropanol.

According to the authors, the possible reason of nanofluid destabilization during pool boiling may be the destruction of heterogeneous micelles on the heater surface. Therefore, the study of nanofluids pool boiling and correct interpretation of the collected data should consider the stability, concentration changes of nanofluid and heating surface properties. The study on hydrodynamic radius of nanoparticles was carried out using experimental setup wherein DLS method has been realized. The results has shown increasing in hydrodynamic radius from 53 to 86 nm with an increasing in the mass fraction of nanoparticles from 0.036 to 4.2 wt. %.

The experiments to determine the stability of nanofluid has shown that the system remains stable throughout the period of the experiment (100 hours), temperatures interval (20–70 °C) and the mass fraction of nanoparticles (0.036–4.2 wt.%). In addition, in this paper, the dependence of the mass fraction of Al2O3 nanoparticles in isopropanol on the value of the transmitted light through the nanofluid was obtained. The magnitude of the transmitted through the nanofluid light is proportional to the mass fraction of nanoparticles.

Author Biographies

Виталий Петрович Железный, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Professor

Department of Thermophysics and Applied Ecology

Юрий Владимирович Семенюк, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Lecturer

Department of Thermophysics and Applied Ecology

Владимир Яковлевич Гоцульский, Odessa Mechnikov national university, Pastera str., 42, Odessa, Ukraine, 65023

PhD, associate professor

Department of general and chemical physic

Артем Геннадьевич Никулин, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Thermophysics and Applied Ecology

Николай Александрович Шимчук, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Thermophysics and Applied Ecology

Николай Николаевич Лукьянов, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Thermophysics and Applied Ecology

References

  1. Duncan, A. B. Review of Microscale Heat Transfer [Text] /A. B. Duncan, G. P. Peterson // Appl Mech Rev. – 1994 – Vol. 47(9). – P. 397–428.
  2. Majumdar, A. Microscale energy transport in solids. In “Microscale Energy Transport” [Text] / C. L. Tien, A. Majumdar, F. Gerner, eds. – Taylor & Francis. – Washington, DC, USA, 1998. – 94 p.
  3. Naphon, P. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency [Text] / P. Naphon, P. Assadamongkol, T. Bororak // Int Commun Heat Mass Transfer. – 2008. – Vol. 35. – P. 1316–1319.
  4. Huminic, G. Heat transfer characteristics of a two-phase closed thermosyphons using nanolfuids [Text] / G. Huminic, A. Huminic // Exp Thermal Fluid Sci. – 2011. – Vol. 35. – P. 550–557.
  5. Nikitin, D. Surface tension, viscosity, and thermal conductivity of nanolubricants and vapor pressure of refrigerant/nanolubricant mixtures [Text] / D. Nikitin, V. Zhelezny, V. Grusko, D. Ivchenko // Estern-European Journal of Enterprise Technologies. – 2012. – Vol. 5, № 5 (59). – P. 12–17.
  6. Pak, B. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [Text] / B. Pak, Y. Cho // Exp Heat Transf. – 1998. – Vol. 11(2). – P. 151–170.
  7. Wen, D. Formulation of nanofluids for natural convective heat transfer applications [Text] / D. Wen, Y. Ding // Int J of Heat and Fluid Flow. – 2005. – Vol. 26(8). – P. 55–64.
  8. Trisaksri, V. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids [Text] / V. Trisaksri, S. Wongwises // Int J Heat Mass Transf. – 2009. – Vol. 52. – P. 1582–1588.
  9. Yang, C. Y. Effect of nano-particles for pool boiling heat transfer of refrigerant R141b on horizontal tubes [Text] / C. Y. Yang, D.W. Liu // Int J Microscale Nanoscale Thermal Fluid Transport Phenomena. – 2010. – Vol. 1 (3). – P. 233–243.
  10. You, S. M. Effect of nanoparticles on critical heat flux of water in pool-boiling heat transfer [Text] / S. M. You, J. H. Kim, K. H. Kim // Appl Phys Lett. –2003. – Vol. 83. – P. 3374–3376.
  11. Kwark, S. M. Pool boiling characteristics of low concentration nanofluids [Text] / S. M. Kwark, R. Kumar, G. Moreno // Int J Heat Mass Transf. – 2010. – Vol. 53. – P. 972–981.
  12. Choi, C. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants [Text] / C. Choi, H. S. Yoo, J. M. Oh // Current Appl Phys. – 2008. – Vol. 8. – P. 710–712.
  13. Никулин, А. Г. Экспериментальная установка для исследования процессов кипения чистых жидкостей и растворов в свободном объеме [Текст] / А. Г. Никулин, Ю. В. Семенюк, Н. Н. Лукьянов // Холодильная техника и технология. – 2013. – T. 4 (144). – С. 12–18.
  14. Kedzierski, M. A. Effect of CuO nanolubricant on R134a pool boiling heat transfer [Text] / M. A. Kedzierski, M. Gong // Int J Refrig. – 2009. – Vol. 32. – P. 791–799.
  15. Utomo, Adi T. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids [Text] / T. Utomo Adi, H. Poth, Phillip T. Robbins, Andrzej W. Pacek // Int J Heat Mass Transf. – 2012. – Vol. 55. – P. 7772–7781.
  16. Ахманов, С. А. Введение в статистическую радиофизику и оптику [Текст] / С. А. Ахманов, Ю. Е. Дьяков, А. С. Чиркин. – М.: Наука, 1981. – 640 с.
  17. Cummins, H. Z. Photon correlation and light beating spectroscopy [Text] / H. Z. Cummins, E. R. Pike. – England: Great Malvern, Royal Radar Establishment, 1974. – 583 p.
  18. Заремба, В. Г. Визначення моментів старших кореляційних функцій електромагнітних полів при одноточковій реєстрації [Текст] / В. Г. Заремба, Г. І. Салістра, В. Я. Гоцульський, В. Е. Чечко // УФЖ. – 1995. – Т. 40(6). – С. 638–639.
  19. Duncan, A. B., Peterson, G. P. (1994). Review of Microscale Heat Transfer. Appl Mech Rev, 47(9), 397–428.
  20. Majumdar, A. C., Tien, L., Majumdar, A., Gerner, F. (1998). Taylor & Francis. Microscale energy transport in solids. In “Microscale Energy Transport”. Washington, DC, USA, 94.
  21. Naphon, P., Assadamongkol, P., Bororak, T. (2008). Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Commun Heat Mass. Transfe, 35, 1316–1319.
  22. Huminic, G., Huminic, A. (2011). Heat transfer characteristics of a two-phase closed thermosyphons using nanolfuids. Exp Thermal Fluid Sci, 35, 550–557.
  23. Nikitin, D., Zhelezny, V., Grusko, V., Ivchenko, D. (2012). Surface tension, viscosity, and thermal conductivity of nanolubricants and vapor pressure of refrigerant/nanolubricant mixtures. Eastern-European Journal of Enterprise Technologies, Vol. 5, № 5 (59), 12–17.
  24. Pak, B., Cho, Y. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf, 11(2), 151–170.
  25. Wen, D, Ding, Y. (2005). Formulation of nanofluids for natural convective heat transfer applications. Int J of Heat and Fluid Flow, 26 (8), 55–64.
  26. Trisaksri, V., Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. Int J Heat Mass. Transf, 52, 1582–1588.
  27. Yang, C. Y., Liu, D. W. (2010). Effect of nano-particles for pool boiling heat transfer of refrigerant 141B on horizontal tubes. Int J Microscale Nanoscale Thermal Fluid Transport Phenomena, 1(3), 233–243.
  28. You, S. M., Kim, J. H., Kim, K. H. (2003). Effect of nanoparticles on critical heat flux of water in pool-boiling heat transfer. Appl Phys Lett, 83, 3374–3376.
  29. Kwark, S. M., Kumar, R., Moreno, G. (2010). Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf, 53, 972–981.
  30. Choi, C., Yoo, H. S., Oh, J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Appl Phys, 8, 710–712.
  31. Nikulin, A. G., Semenjuk, Ju. V., Luk’janov, N. N. (2013). Jeksperimental’naja ustanovka dlja issledovanija processov kipenija chistyh zhidkostej i rastvorov v svobodnom obeme. Holodil’naja tehnika i tehnologija, 4 (144), 12–18.
  32. Kedzierski, M. A., Gong, M. (2009). Effect of CuO nanolubricant on R134a pool boiling heat transfer. Int J Refrig, 32, 791–799.
  33. Utomo, Adi T., Poth, H., Robbins, T. Phillip., Andrzej, W. Pacek (2012). Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf, 55, 7772–7781.
  34. Akhmanov, S. A., Dyakov, Yu. Ye., Chirkin, A. S. (1981). Introduction to Statistical Radiophysics and Optics, Nauka, Moscow, USSR, 640.
  35. Cummins, H. Z., Pike, E. R. (1974). Photon correlation and light beating spectroscopy, Royal Radar Establishment, Great Malvern, England, 583.
  36. Zaremba, V. G., Salistra, G. I., Gotsulsky, V. Ya., Chechko, V. E. (1995). Single-point registration method for determination higher order correlation functions moments, Ukr J Phys., 40 (6), 638–639.

Published

2014-04-15

How to Cite

Железный, В. П., Семенюк, Ю. В., Гоцульский, В. Я., Никулин, А. Г., Шимчук, Н. А., & Лукьянов, Н. Н. (2014). Methodological features in research of pool boiling processes of nanofluid isopropanol/Al2O3. Eastern-European Journal of Enterprise Technologies, 2(5(68), 39–45. https://doi.org/10.15587/1729-4061.2014.23553

Issue

Section

Applied physics