Improvement of the methodology for the assessment of soil biogenic pollution through the use of geoecological approaches and the use of information technologies
DOI:
https://doi.org/10.15587/1729-4061.2021.235845Keywords:
soil pollution, nutrient balance, drainage area modeling, normalized vegetation indexAbstract
The study of the components of the balance of biogenic elements in anthropogenic ecosystems has been carried out and the mechanism for calculating the balance of biogenic elements has been determined. The necessity of improving the existing methodology is proved, which consists in preliminary modeling of the catchment area using geoinformation methods. On the example of the mouth of the river, a drainage area was modeled in Oril, during which the boundaries and total catchment area were determined, which is 39.7 thousand hectares. Experimental studies have determined the area of land according to their types of nature use (industrial, residential, forestry and agricultural, etc.). It has been established that only 15% of the investigated lands have agricultural use, however, it is this type of nature management that most contributes to biogenic pollution of this ecosystem. According to the results of calculations, it is determined that up to 10 thousand tons of nitrogen and phosphorus, respectively, are accumulated in the soil due to the excess use of mineral fertilizers. The results obtained indicate the feasibility and practical attractiveness of the proposed approach for calculating the balance of nutrients. Improvements include the application of digital elevation model and normalized vegetation index geodata obtained using ArcGIS Desktop software. It is shown that the technique used will allow obtaining the results of the adjusted volumes of nitrogen and phosphorus accumulation in soils and indicating the sources of their input.
Thus, there are grounds for improving the methodology for calculating the balance of nutrients through the use of information technology. The geoecological approach will intensify the monitoring of nutrients, which will help to regulate the pressure on the ecosystem.
References
- Yuan, Z., Shi, J., Wu, H., Zhang, L., Bi, J. (2011). Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. Journal of Environmental Management, 92 (8), 2021–2028. doi: https://doi.org/10.1016/j.jenvman.2011.03.025
- Camargo, J. A., Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32 (6), 831–849. doi: https://doi.org/10.1016/j.envint.2006.05.002
- Hansen, B., Thorling, L., Schullehner, J., Termansen, M., Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-07147-2
- Manuel, J. (2014). Nutrient Pollution: A Persistent Threat to Waterways. Environmental Health Perspectives, 122 (11). doi: https://doi.org/10.1289/ehp.122-a304
- Yao, X., Zhang, Y., Zhang, L., Zhou, Y. (2018). A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. Journal of Environmental Sciences, 66, 274–285. doi: https://doi.org/10.1016/j.jes.2016.10.022
- Lewis, W. M., Wurtsbaugh, W. A., Paerl, H. W. (2011). Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environmental Science & Technology, 45 (24), 10300–10305. doi: https://doi.org/10.1021/es202401p
- Yatsyk, A. V., Hryshchenko, Yu. M., Volkova, L. A., Pasheniuk, I. A. (2007). Vodni resursy: vykorystannia, okhorona, vidtvorennia, upravlinnia. Kyiv: Heneza, 360.
- Natsionalna dopovid pro yakist pytnoi vody ta stan pytnoho vodopostachannia v Ukraini u 2018 rotsi (2019). Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy. Kyiv. Available at: https://www.minregion.gov.ua/wp-content/uploads/2019/11/Proekt-Nats.-dop.-za-2018.pdf
- Sala, L., Mujeriego, R. (2001). Cultural eutrophication control through water reuse. Water Science and Technology, 43 (10), 109–116. doi: https://doi.org/10.2166/wst.2001.0595
- Hakeem, K. R., Sabir, M., Ozturk, M., Akhtar, M. S., Ibrahim, F. H. (2016). Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. Reviews of Environmental Contamination and Toxicology, 183–217. doi: https://doi.org/10.1007/398_2016_11
- Ahmed, M., Rauf, M., Mukhtar, Z., Saeed, N. A. (2017). Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 24 (35), 26983–26987. doi: https://doi.org/10.1007/s11356-017-0589-7
- Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188 (3). doi: https://doi.org/10.1007/s10661-016-5167-9
- Malovanyi, M. S., Havryliak, M. Ya., Nedal Khussein Musalam Al Khasanat (2009). Mozhlyvosti ekolohichno bezpechnoho vykorystannia mineralnykh dobryv. Ekolohichna bezpeka, 3 (7), 31–37. Available at: http://www.kdu.edu.ua/EKB_jurnal/2009_3(7)/PDF/31.PDF
- Mollenhauer, H., Kasner, M., Haase, P., Peterseil, J., Wohner, C., Frenzel, M. et. al. (2018). Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. Science of The Total Environment, 624, 968–978. doi: https://doi.org/10.1016/j.scitotenv.2017.12.095
- Ellingsen, K. E., Yoccoz, N. G., Tveraa, T., Hewitt, J. E., Thrush, S. F. (2017). Long-term environmental monitoring for assessment of change: measurement inconsistencies over time and potential solutions. Environmental Monitoring and Assessment, 189 (11). doi: https://doi.org/10.1007/s10661-017-6317-4
- Wang, N., Mao, L., Huang, H. B., Zhang, J. Z., Zhou, P. (2012). Temporal and spatial variation of non-point source nitrogen in surface water in urban agricultural region of Shanghai. Huan Jing Ke Xue, 33 (3), 802–809. Available at: https://pubmed.ncbi.nlm.nih.gov/22624371/
- Bartley, R., Speirs, W. J., Ellis, T. W., Waters, D. K. (2012). A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine Pollution Bulletin, 65 (4-9), 101–116. doi: https://doi.org/10.1016/j.marpolbul.2011.08.009
- Shen, Z., Qiu, J., Hong, Q., Chen, L. (2014). Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Science of The Total Environment, 493, 138–146. doi: https://doi.org/10.1016/j.scitotenv.2014.05.109
- Reymers, N. F. (1990). Prirodopol'zovanie. Moscow: Mysl', 637.
- Xu, H.-S., Xu, Z.-X., Liu, P. (2013). Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin. Huan Jing Ke Xue, 34 (3), 882–891. Available at: https://pubmed.ncbi.nlm.nih.gov/2374539/
- Pinto, C. C., Calazans, G. M., Oliveira, S. C. (2019). Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environmental Monitoring and Assessment, 191 (3). doi: https://doi.org/10.1007/s10661-019-7281-y
- Bresciani, M., Vascellari, M., Giardino, C., Matta, E. (2012). Remote sensing supports the definition of the water quality status of Lake Omodeo (Italy). European Journal of Remote Sensing, 45 (1), 349–360. doi: https://doi.org/10.5721/eujrs20124530
- Wang, X., Yang, W. (2019). Water quality monitoring and evaluation using remote sensing techniques in China: a systematic review. Ecosystem Health and Sustainability, 5 (1), 47–56. doi: https://doi.org/10.1080/20964129.2019.1571443
- Arheimer, B., Andersson, L., Larsson, M., Lindström ,G., Olsson, J., Pers, B. C.( 2004). Modelling diffuse nutrient flow in eutrophication control scenarios. Water Sci Technol., 49 (3), 37–45. URL: https://pubmed.ncbi.nlm.nih.gov/15053097/
- Cherry, K. A., Shepherd, M., Withers, P. J. A., Mooney, S. J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of The Total Environment, 406 (1-2), 1–23. doi: https://doi.org/10.1016/j.scitotenv.2008.07.015
- SRTM (TSMR) Dnepropetrovskoy oblasti. Available at: https://mapgroup.com.ua/services/32-dem-ukraine/88-srtm-tsmr-dnepropetrovskoj-oblasti
- Science for a changing world. Available at: https://earthexplorer.usgs.gov/
- Official site company ESRI. Available at: https://www.esri.com/ru-ru/arcgis/about-arcgis/overview
- Gardiner, M. M., Burkman, C. E., Prajzner, S. P. (2013). The Value of Urban Vacant Land to Support Arthropod Biodiversity and Ecosystem Services. Environmental Entomology, 42 (6), 1123–1136. doi: https://doi.org/10.1603/en12275
- Bazhan, O. H., Vortman, D. Ya. (2011). Petrykivka. Entsyklopediia istorii Ukrainy. Kyiv: Nauk. dumka, 183.
- Rehionalna dopovid «Pro stan navkolyshnoho pryrodnoho seredovyshcha Dnipropetrovskoi oblasti v 2019 rotsi» (2020). Dnipropetrovsk, 321. Available at: https://adm.dp.gov.ua/storage/app/uploads/public/605/06f/47b/60506f47bd3cb255698190.pdf
- Jacobs, A. H. (1967). To Count a Crowd. Columbia Journalism Review, 6, 36–40.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Iryna Omelych, Natalia Neposhyvailenko, Oleksandr Zberovskyi, Iryna Korniienko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.