Improvement of the methodology for the assessment of soil biogenic pollution through the use of geoecological approaches and the use of information technologies

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235845

Keywords:

soil pollution, nutrient balance, drainage area modeling, normalized vegetation index

Abstract

The study of the components of the balance of biogenic elements in anthropogenic ecosystems has been carried out and the mechanism for calculating the balance of biogenic elements has been determined. The necessity of improving the existing methodology is proved, which consists in preliminary modeling of the catchment area using geoinformation methods. On the example of the mouth of the river, a drainage area was modeled in Oril, during which the boundaries and total catchment area were determined, which is 39.7 thousand hectares. Experimental studies have determined the area of land according to their types of nature use (industrial, residential, forestry and agricultural, etc.). It has been established that only 15% of the investigated lands have agricultural use, however, it is this type of nature management that most contributes to biogenic pollution of this ecosystem. According to the results of calculations, it is determined that up to 10 thousand tons of nitrogen and phosphorus, respectively, are accumulated in the soil due to the excess use of mineral fertilizers. The results obtained indicate the feasibility and practical attractiveness of the proposed approach for calculating the balance of nutrients. Improvements include the application of digital elevation model and normalized vegetation index geodata obtained using ArcGIS Desktop software. It is shown that the technique used will allow obtaining the results of the adjusted volumes of nitrogen and phosphorus accumulation in soils and indicating the sources of their input.

Thus, there are grounds for improving the methodology for calculating the balance of nutrients through the use of information technology. The geoecological approach will intensify the monitoring of nutrients, which will help to regulate the pressure on the ecosystem.

Author Biographies

Iryna Omelych, Dniprovsk State Technical University

Postgraduate Student

Department of Ecology and Environmental Protection

Natalia Neposhyvailenko, Dniprovsk State Technical University

PhD, Associate Professor

Department of Ecology and Environmental Protection

Oleksandr Zberovskyi, Dniprovsk State Technical University

Doctor of Technical Sciences, Professor

Department of Ecology and Environmental Protection

Iryna Korniienko, National Aviation University

PhD, Associate Professor

Department of Biotechnology

References

  1. Yuan, Z., Shi, J., Wu, H., Zhang, L., Bi, J. (2011). Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. Journal of Environmental Management, 92 (8), 2021–2028. doi: https://doi.org/10.1016/j.jenvman.2011.03.025
  2. Camargo, J. A., Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32 (6), 831–849. doi: https://doi.org/10.1016/j.envint.2006.05.002
  3. Hansen, B., Thorling, L., Schullehner, J., Termansen, M., Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-07147-2
  4. Manuel, J. (2014). Nutrient Pollution: A Persistent Threat to Waterways. Environmental Health Perspectives, 122 (11). doi: https://doi.org/10.1289/ehp.122-a304
  5. Yao, X., Zhang, Y., Zhang, L., Zhou, Y. (2018). A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. Journal of Environmental Sciences, 66, 274–285. doi: https://doi.org/10.1016/j.jes.2016.10.022
  6. Lewis, W. M., Wurtsbaugh, W. A., Paerl, H. W. (2011). Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environmental Science & Technology, 45 (24), 10300–10305. doi: https://doi.org/10.1021/es202401p
  7. Yatsyk, A. V., Hryshchenko, Yu. M., Volkova, L. A., Pasheniuk, I. A. (2007). Vodni resursy: vykorystannia, okhorona, vidtvorennia, upravlinnia. Kyiv: Heneza, 360.
  8. Natsionalna dopovid pro yakist pytnoi vody ta stan pytnoho vodopostachannia v Ukraini u 2018 rotsi (2019). Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy. Kyiv. Available at: https://www.minregion.gov.ua/wp-content/uploads/2019/11/Proekt-Nats.-dop.-za-2018.pdf
  9. Sala, L., Mujeriego, R. (2001). Cultural eutrophication control through water reuse. Water Science and Technology, 43 (10), 109–116. doi: https://doi.org/10.2166/wst.2001.0595
  10. Hakeem, K. R., Sabir, M., Ozturk, M., Akhtar, M. S., Ibrahim, F. H. (2016). Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. Reviews of Environmental Contamination and Toxicology, 183–217. doi: https://doi.org/10.1007/398_2016_11
  11. Ahmed, M., Rauf, M., Mukhtar, Z., Saeed, N. A. (2017). Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 24 (35), 26983–26987. doi: https://doi.org/10.1007/s11356-017-0589-7
  12. Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188 (3). doi: https://doi.org/10.1007/s10661-016-5167-9
  13. Malovanyi, M. S., Havryliak, M. Ya., Nedal Khussein Musalam Al Khasanat (2009). Mozhlyvosti ekolohichno bezpechnoho vykorystannia mineralnykh dobryv. Ekolohichna bezpeka, 3 (7), 31–37. Available at: http://www.kdu.edu.ua/EKB_jurnal/2009_3(7)/PDF/31.PDF
  14. Mollenhauer, H., Kasner, M., Haase, P., Peterseil, J., Wohner, C., Frenzel, M. et. al. (2018). Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. Science of The Total Environment, 624, 968–978. doi: https://doi.org/10.1016/j.scitotenv.2017.12.095
  15. Ellingsen, K. E., Yoccoz, N. G., Tveraa, T., Hewitt, J. E., Thrush, S. F. (2017). Long-term environmental monitoring for assessment of change: measurement inconsistencies over time and potential solutions. Environmental Monitoring and Assessment, 189 (11). doi: https://doi.org/10.1007/s10661-017-6317-4
  16. Wang, N., Mao, L., Huang, H. B., Zhang, J. Z., Zhou, P. (2012). Temporal and spatial variation of non-point source nitrogen in surface water in urban agricultural region of Shanghai. Huan Jing Ke Xue, 33 (3), 802–809. Available at: https://pubmed.ncbi.nlm.nih.gov/22624371/
  17. Bartley, R., Speirs, W. J., Ellis, T. W., Waters, D. K. (2012). A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine Pollution Bulletin, 65 (4-9), 101–116. doi: https://doi.org/10.1016/j.marpolbul.2011.08.009
  18. Shen, Z., Qiu, J., Hong, Q., Chen, L. (2014). Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Science of The Total Environment, 493, 138–146. doi: https://doi.org/10.1016/j.scitotenv.2014.05.109
  19. Reymers, N. F. (1990). Prirodopol'zovanie. Moscow: Mysl', 637.
  20. Xu, H.-S., Xu, Z.-X., Liu, P. (2013). Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin. Huan Jing Ke Xue, 34 (3), 882–891. Available at: https://pubmed.ncbi.nlm.nih.gov/2374539/
  21. Pinto, C. C., Calazans, G. M., Oliveira, S. C. (2019). Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environmental Monitoring and Assessment, 191 (3). doi: https://doi.org/10.1007/s10661-019-7281-y
  22. Bresciani, M., Vascellari, M., Giardino, C., Matta, E. (2012). Remote sensing supports the definition of the water quality status of Lake Omodeo (Italy). European Journal of Remote Sensing, 45 (1), 349–360. doi: https://doi.org/10.5721/eujrs20124530
  23. Wang, X., Yang, W. (2019). Water quality monitoring and evaluation using remote sensing techniques in China: a systematic review. Ecosystem Health and Sustainability, 5 (1), 47–56. doi: https://doi.org/10.1080/20964129.2019.1571443
  24. Arheimer, B., Andersson, L., Larsson, M., Lindström ,G., Olsson, J., Pers, B. C.( 2004). Modelling diffuse nutrient flow in eutrophication control scenarios. Water Sci Technol., 49 (3), 37–45. URL: https://pubmed.ncbi.nlm.nih.gov/15053097/
  25. Cherry, K. A., Shepherd, M., Withers, P. J. A., Mooney, S. J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of The Total Environment, 406 (1-2), 1–23. doi: https://doi.org/10.1016/j.scitotenv.2008.07.015
  26. SRTM (TSMR) Dnepropetrovskoy oblasti. Available at: https://mapgroup.com.ua/services/32-dem-ukraine/88-srtm-tsmr-dnepropetrovskoj-oblasti
  27. Science for a changing world. Available at: https://earthexplorer.usgs.gov/
  28. Official site company ESRI. Available at: https://www.esri.com/ru-ru/arcgis/about-arcgis/overview
  29. Gardiner, M. M., Burkman, C. E., Prajzner, S. P. (2013). The Value of Urban Vacant Land to Support Arthropod Biodiversity and Ecosystem Services. Environmental Entomology, 42 (6), 1123–1136. doi: https://doi.org/10.1603/en12275
  30. Bazhan, O. H., Vortman, D. Ya. (2011). Petrykivka. Entsyklopediia istorii Ukrainy. Kyiv: Nauk. dumka, 183.
  31. Rehionalna dopovid «Pro stan navkolyshnoho pryrodnoho seredovyshcha Dnipropetrovskoi oblasti v 2019 rotsi» (2020). Dnipropetrovsk, 321. Available at: https://adm.dp.gov.ua/storage/app/uploads/public/605/06f/47b/60506f47bd3cb255698190.pdf
  32. Jacobs, A. H. (1967). To Count a Crowd. Columbia Journalism Review, 6, 36–40.

Downloads

Published

2021-06-30

How to Cite

Omelych, I., Neposhyvailenko, N., Zberovskyi, O., & Korniienko, I. (2021). Improvement of the methodology for the assessment of soil biogenic pollution through the use of geoecological approaches and the use of information technologies. Eastern-European Journal of Enterprise Technologies, 3(10(111), 42–53. https://doi.org/10.15587/1729-4061.2021.235845