Development of a solar element model using the method of fractal geometry theory

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235882

Keywords:

solar cell model, sensing surface of a photoelectric converter, fractal dimension of the structure

Abstract

It is shown that in the existing models of the solar cell, assumptions were made about the ideally smooth surface topography, which had a significant impact on the calculation of the output parameters. It is proposed to take into account the real working area of the receiving surface of the solar cell to improve the accuracy, linearity and stability of the current-voltage characteristics. A geometric model of the structure of the receiving surface of a solar cell has been developed, which describes and takes into account geometric changes in the structure of a semiconductor conducting layer, in the presence of damaging defects in the form of local inhomogeneities, micropores and macrocracks. It was found that the receiving surface with damaging defects is a porous inhomogeneous structure and has fractal properties: self-similarity, invariance, scalability. It is proposed to determine the real working area, to use the method of the theory of fractal geometry and, as an effective quantitative parameter for assessing the change in fractal structure, to choose the value of the fractal dimension. The obtained analytical expressions for the improved model establish the relationship between the output parameters and determine the degree of filling of the current-voltage characteristic for the output power and efficiency. The computational experiment showed that the real area can be much less than the geometric area of the topological relief and is quantitatively related to the change in fractal dimension in the range from 2.31 to 2.63. The obtained data on the real area, when solving analytical expressions for the solar cell model, play an important role in ensuring the stability and linearity of the current-voltage characteristic, increasing its accuracy up to 5 %.

Author Biographies

Pavlo Budanov, Ukrainian Engineering Pedagogics Academy

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Ihor Kyrysov, Ukrainian Engineering Pedagogics Academy

Senior Lecturer

Department of Physics, Electrical Engineering and Power Engineering

Kostiantyn Brovko, Kharkiv Petro Vasylenko National Technical University of Agriculture

PhD, Associate Professor

Department of Integrated Electric Technologies and Processes

Dmytro Rudenko, Ukrainian Engineering Pedagogics Academy

PhD

Department of Physics, Electrical Engineering and Power Engineering

Pavlo Vasiuchenko, Ukrainian Engineering Pedagogics Academy

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Andrii Nosyk, National Technical University "Kharkiv Polytechnic Institute"

PhD, Senior Researcher

Department of Multimedia Information Technologies and Systems

References

  1. Kurtz, S., Haegel, N., Sinton, R., Margolis, R. (2017). A new era for solar. Nature Photonics, 11 (1), 3–5. doi: http://doi.org/10.1038/nphoton.2016.232
  2. Ibrahim, A. (2011). Effect of Shadow and Dust on the Performance of Silicon Solar Cell. Journal of Basic and Applied Sciences Research, 1 (3), 222–230. Available at: https://www.researchgate.net/profile/A-Ibrahim/publication/267971484_Effect_of_Shadow_and_Dust_on_the_Performance_of_Silicon_Solar_Cell/links/54db59660cf233119bc5ef7d/Effect-of-Shadow-and-Dust-on-the-Performance-of-Silicon-Solar-Cell.pdf
  3. Alharbi, F. H., Kais, S. (2015). Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renewable and Sustainable Energy Reviews, 43, 1073–1089. doi: http://doi.org/10.1016/j.rser.2014.11.101
  4. Kozyukov, D. A., TSygankov, B. K. (2015). Modelirovanie kharakteristik fotoelektricheskikh moduley v MATLAB/Simulink. Nauchniy zhurnal KubGAU, 112 (8), 1–16. Available at: https://cyberleninka.ru/article/n/modelirovanie-harakteristik-fotoelektricheskih-moduley-v-matlab-simulink
  5. Siddiqui, M. U., Abido, M. (2013). Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms. Applied Soft Computing, 13 (12), 4608–4621. doi: http://doi.org/10.1016/j.asoc.2013.07.005
  6. Ruby, N., Jayabarathi, R. (2017). Predicting the Power Output of a Grid-Connected Solar Panel Using Multi-Input Support Vector Regression. Procedia Computer Science, 115, 723–730. doi: http://doi.org/10.1016/j.procs.2017.09.143
  7. Salmi, T., Bouzguenda, M., Gastli, A., Masmoudi, A. (2012). MATLAB/Simulink Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research, 2 (2), 213–218. Available at: https://www.researchgate.net/publication/258913169_MATLABSimulink_Based_Modelling_of_Solar_Photovoltaic_Cell
  8. Malik, K., Bhatti, B. A., Kamran, F. (2016). An approach to predict output of PV panels using weather corrected global irradiance. IEEE International Conference on Intelligent Systems Engineering, 111–117. doi: http://doi.org/10.1109/intelse.2016.7475171
  9. Ivanchura, V. I., Chubar, A. V., Post, S. S. (2012). Energy Prototypes of Units in Autonomous Power Supply Systems. Zhurnal SFU. Tekhnika i tekhnologii, 2, 179–190. Available at: https://cyberleninka.ru/article/n/energeticheskie-modeli-elementov-avtonomnyh-sistem-elektropitaniya/viewer
  10. Nguyen, X. H., Nguyen, M. P. (2015). Mathematical modeling of photovoltaic cell/module/arrays with tags in MATLAB/Simulink. Environmental Systems Research, 4 (24), 7–22. doi: http://doi.org/10.1186/s40068-015-0047-9
  11. Wang, Z., He, L., Cheng, X., He, J. (2014). Method for short-term photovoltaic generation power prediction base on weather patterns. IEEE China International Conference on Electricity Distribution, 213–215. doi: http://doi.org/10.1109/ciced.2014.6991696
  12. Elbaset, A. A., Ali, H., Abd-El Sattar, M. (2014). Novel seven-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, 130, 442–455. doi: https//doi.org/10.1016/j.solmat.2014.07.016
  13. Ahmad, A. (2013). A simple method to extract the parameters of the single-diode model of a PV system. Turkish Journal of Physics, 37, 121–131. Available at: https://www.academia.edu/7441877/A_simple_method_to_extract_the_parameters_of_the_single_diode_model_of_a_PV_system
  14. Koval, O. S., Tivanov, M. S. (2012). Opredelenie parametrov solnechnogo elementa iz ego volt-ampernoy kharakteristiki. Vestnik BGU, 1 (2), 39–44. Available at: https://elib.bsu.by/bitstream/123456789/44192/1/39-44.pdf
  15. Feder, E. (2014). Fraktaly. Moscow: URSS: Lenand, 256. Available at: http://www.prometeus.nsc.ru/acquisitions/15-04-14/cont01.ssi
  16. Balkhanov, V. K. (2013). Osnovy fraktalnoy geometrii i fraktalnogo ischisleniya. Ulan-Ude: Izd-vo Buryatskogo gosuniversiteta, 224. Available at: http://ipms.bscnet.ru/publications/src/2013/FractGeomet.pdf
  17. Budanov, P., Brovko, K., Cherniuk, A., Pantielieieva, I., Oliynyk, Y., Shmatko, N., Vasyuchenko, P. (2018). Improvement of safety of autonomous electrical installations by implementing a method for calculating the electrolytic grounding electrodes parameters. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 20–28. doi: http://doi.org/10.15587/1729-4061.2018.144925
  18. Mandelbrot, B. (2010). Fraktalnaya geometriya prirody. Izhevskiy institut kompyuternykh issledovaniy, NITS «Regulyarnaya i khaoticheskaya dinamika», 656.
  19. Zinovev, V. V., Beltyukov, A. P., Bartenev, O. A. (2016). Matematicheskaya model fotoelektricheskogo preobrazovatelya s ispolzovaniem W-funktsii Lamberta. Izvestiya Instituta matematiki i informatiki, 2 (48), 22–30.
  20. Slipchenko, N. I. (2011). Eksperimentalnye issledovaniya kharakteristik solnechnoy paneli KV 150/24(12) v zimnikh usloviyakh. Vestnik Nats. tekhn. un-ta "KHPI". Temat. vyp.: Novye resheniya v sovremennykh tekhnologiyakh, 24, 86–92. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/12877
  21. Said, S., Massoud, A., Benammar, M., Ahmed, S. (2012). A matlab/simulink based photovoltaic array model employing simpowersystems toolbox. Journal of Energy and Power Engineering, 6, 1965–1975. Available at: https://www.researchgate.net/publication/285027675_A_matlabsimulink_based_photovoltaic_array_model_employing_simpowersystems_toolbox
  22. Savrasov, F. V., Kovalev, I. K. (2012). Issledovanie effektivnosti raboty solnechnoy batarei v polevykh usloviyakh. Izvestiya Tomskogo politekhnicheskogo universiteta, 321 (4), 165–168. Available at: http://earchive.tpu.ru/handle/11683/4482
  23. Lunin, L. S., Paschenko, A. S. (2011). Modelirovanie i issledovanie kharakteristik fotoelektricheskikh preobrazovateley na osnove GaAs i GaSb. ZHurnal tekhnicheskoy fiziki, 81, 71–76. Available at: https://elibrary.ru/item.asp?id=20325216
  24. Cotfas, D. T., Cotfas, P. A., Kaplanis, S. (2013). Methods to determine the dc parameters of solar cells: A critical review. Renewable and Sustainable Energy Reviews, 28, 588–596. doi: http://doi.org/10.1016/j.rser.2013.08.017
  25. Rudenko, D. V., Vasyuchenko, P. V. (2019). Modeling of physical processes of the solar photovoltaic. Vcheni zapysky Tavriiskoho natsionalnoho universytetu im. V. I. Vernadskoho. Seriia: Tekhnichni nauky, 30 (69), 42–47.
  26. Kolosov, R. V. (2019). Modelling of solar panels. Intellektualnaya elektrotekhnika, 2 (6), 85–93.
  27. Laudani, A., Riganti Fulginei, F., Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms. Solar Energy, 103, 316–326. doi: http://doi.org/10.1016/j.solener.2014.02.014
  28. Lineykin, S., Averbukh, M., Kuperman, A. (2014). An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renewable and Sustainable Energy Reviews, 30, 282–289. doi: http://doi.org/10.1016/j.rser.2013.10.015
  29. Dongue, S. B., Njomo, D., Tamba, J. G., Ebengai, L. (2012). Modeling of Electrical Response of Illuminated Crystalline Photovoltaic Modules Using Four- and Five-Parameter Models. International Journal of Emerging Technology and Advanced Engineering, 2, 612–619.
  30. Cubas, J., Pindado, S., Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247, 467–474. doi: http://doi.org/10.1016/j.jpowsour.2013.09.008
  31. Peng, L., Sun, Y., Meng, Z., Wang, Y., Xu, Y. (2013). A new method for determining the characteristics of solar cells. Journal of Power Sources, 227, 131–136. doi: http://doi.org/10.1016/j.jpowsour.2012.07.061
  32. Orioli, A., Di Gangi, A. (2013). A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied Energy, 102, 1160–1177. doi: http://doi.org/10.1016/j.apenergy.2012.06.036
  33. Seifi, M., Che Soh, A. Bt., Izzrib, N., Wahab Abd., Khair, M., Hassan, B. (2013). A Comparative Study of PV Models in Matlab/Simulink. International Scholarly and Scientific Research & Innovation, 7 (2), 97–102.
  34. Cubas, J., Pindado, S., de Manuel, C. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies, 7 (7), 4098–4115. doi: http://doi.org/10.3390/en7074098
  35. Cucchiella, F., D’Adamo, I., Gastaldi, M. (2016). A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies. Energy Conversion and Management, 129, 62–74. doi: http://doi.org/10.1016/j.enconman.2016.09.075
  36. Villalva, M. G., Gazoli, J. R., Filho, E. R. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24 (5), 1198–1208. doi: http://doi.org/10.1109/tpel.2009.2013862
  37. Stanly, L. S., Divya, R., Nair, M. G. (2015). Grid connected solar photovoltaic system with Shunt Active Filtering capability under transient load conditions. IEEE International Conference on Advancements in Power and Energy, 345–350. doi: http://doi.org/10.1109/tapenergy.2015.7229643
  38. Salmi, Т., Bouzguenda, M., Gastli, A., Masmoundi, A. (2012). MATLAB/Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable energy researcg, 2, 213–218.
  39. Patil Sahebrao, N., Prasad, R. C. (2014). Design and simulation of MPPT algorithm for solar energy system using Simulink model. International Journal of Research in Engineering and Applied Sciences, 2 (1), 37–40. Available at: https://www.semanticscholar.org/paper/DESIGN-AND-SIMULATION-OF-MPPT-ALGORITHM-FOR-SOLAR-Sahebrao-Prasad/69aec92f9308bc20f0771649c81f854e8907adba
  40. Surya Kumari, J., Sai Babu, Ch. (2012). Mathematical Modelling and Simulation of Photovoltaic Cell Using MATLAB/Simulink Environment and PLECS Blockset. International Journal of Electrical and Computer Engineering, 2 (1), 26–34. doi: http://doi.org/10.11591/ijece.v2i1.117

Downloads

Published

2021-06-30

How to Cite

Budanov, P., Kyrysov, I., Brovko, K., Rudenko, D., Vasiuchenko, P., & Nosyk, A. (2021). Development of a solar element model using the method of fractal geometry theory. Eastern-European Journal of Enterprise Technologies, 3(8(111), 75–89. https://doi.org/10.15587/1729-4061.2021.235882

Issue

Section

Energy-saving technologies and equipment