Development of a solar element model using the method of fractal geometry theory
DOI:
https://doi.org/10.15587/1729-4061.2021.235882Keywords:
solar cell model, sensing surface of a photoelectric converter, fractal dimension of the structureAbstract
It is shown that in the existing models of the solar cell, assumptions were made about the ideally smooth surface topography, which had a significant impact on the calculation of the output parameters. It is proposed to take into account the real working area of the receiving surface of the solar cell to improve the accuracy, linearity and stability of the current-voltage characteristics. A geometric model of the structure of the receiving surface of a solar cell has been developed, which describes and takes into account geometric changes in the structure of a semiconductor conducting layer, in the presence of damaging defects in the form of local inhomogeneities, micropores and macrocracks. It was found that the receiving surface with damaging defects is a porous inhomogeneous structure and has fractal properties: self-similarity, invariance, scalability. It is proposed to determine the real working area, to use the method of the theory of fractal geometry and, as an effective quantitative parameter for assessing the change in fractal structure, to choose the value of the fractal dimension. The obtained analytical expressions for the improved model establish the relationship between the output parameters and determine the degree of filling of the current-voltage characteristic for the output power and efficiency. The computational experiment showed that the real area can be much less than the geometric area of the topological relief and is quantitatively related to the change in fractal dimension in the range from 2.31 to 2.63. The obtained data on the real area, when solving analytical expressions for the solar cell model, play an important role in ensuring the stability and linearity of the current-voltage characteristic, increasing its accuracy up to 5 %.
References
- Kurtz, S., Haegel, N., Sinton, R., Margolis, R. (2017). A new era for solar. Nature Photonics, 11 (1), 3–5. doi: http://doi.org/10.1038/nphoton.2016.232
- Ibrahim, A. (2011). Effect of Shadow and Dust on the Performance of Silicon Solar Cell. Journal of Basic and Applied Sciences Research, 1 (3), 222–230. Available at: https://www.researchgate.net/profile/A-Ibrahim/publication/267971484_Effect_of_Shadow_and_Dust_on_the_Performance_of_Silicon_Solar_Cell/links/54db59660cf233119bc5ef7d/Effect-of-Shadow-and-Dust-on-the-Performance-of-Silicon-Solar-Cell.pdf
- Alharbi, F. H., Kais, S. (2015). Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renewable and Sustainable Energy Reviews, 43, 1073–1089. doi: http://doi.org/10.1016/j.rser.2014.11.101
- Kozyukov, D. A., TSygankov, B. K. (2015). Modelirovanie kharakteristik fotoelektricheskikh moduley v MATLAB/Simulink. Nauchniy zhurnal KubGAU, 112 (8), 1–16. Available at: https://cyberleninka.ru/article/n/modelirovanie-harakteristik-fotoelektricheskih-moduley-v-matlab-simulink
- Siddiqui, M. U., Abido, M. (2013). Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms. Applied Soft Computing, 13 (12), 4608–4621. doi: http://doi.org/10.1016/j.asoc.2013.07.005
- Ruby, N., Jayabarathi, R. (2017). Predicting the Power Output of a Grid-Connected Solar Panel Using Multi-Input Support Vector Regression. Procedia Computer Science, 115, 723–730. doi: http://doi.org/10.1016/j.procs.2017.09.143
- Salmi, T., Bouzguenda, M., Gastli, A., Masmoudi, A. (2012). MATLAB/Simulink Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research, 2 (2), 213–218. Available at: https://www.researchgate.net/publication/258913169_MATLABSimulink_Based_Modelling_of_Solar_Photovoltaic_Cell
- Malik, K., Bhatti, B. A., Kamran, F. (2016). An approach to predict output of PV panels using weather corrected global irradiance. IEEE International Conference on Intelligent Systems Engineering, 111–117. doi: http://doi.org/10.1109/intelse.2016.7475171
- Ivanchura, V. I., Chubar, A. V., Post, S. S. (2012). Energy Prototypes of Units in Autonomous Power Supply Systems. Zhurnal SFU. Tekhnika i tekhnologii, 2, 179–190. Available at: https://cyberleninka.ru/article/n/energeticheskie-modeli-elementov-avtonomnyh-sistem-elektropitaniya/viewer
- Nguyen, X. H., Nguyen, M. P. (2015). Mathematical modeling of photovoltaic cell/module/arrays with tags in MATLAB/Simulink. Environmental Systems Research, 4 (24), 7–22. doi: http://doi.org/10.1186/s40068-015-0047-9
- Wang, Z., He, L., Cheng, X., He, J. (2014). Method for short-term photovoltaic generation power prediction base on weather patterns. IEEE China International Conference on Electricity Distribution, 213–215. doi: http://doi.org/10.1109/ciced.2014.6991696
- Elbaset, A. A., Ali, H., Abd-El Sattar, M. (2014). Novel seven-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, 130, 442–455. doi: https//doi.org/10.1016/j.solmat.2014.07.016
- Ahmad, A. (2013). A simple method to extract the parameters of the single-diode model of a PV system. Turkish Journal of Physics, 37, 121–131. Available at: https://www.academia.edu/7441877/A_simple_method_to_extract_the_parameters_of_the_single_diode_model_of_a_PV_system
- Koval, O. S., Tivanov, M. S. (2012). Opredelenie parametrov solnechnogo elementa iz ego volt-ampernoy kharakteristiki. Vestnik BGU, 1 (2), 39–44. Available at: https://elib.bsu.by/bitstream/123456789/44192/1/39-44.pdf
- Feder, E. (2014). Fraktaly. Moscow: URSS: Lenand, 256. Available at: http://www.prometeus.nsc.ru/acquisitions/15-04-14/cont01.ssi
- Balkhanov, V. K. (2013). Osnovy fraktalnoy geometrii i fraktalnogo ischisleniya. Ulan-Ude: Izd-vo Buryatskogo gosuniversiteta, 224. Available at: http://ipms.bscnet.ru/publications/src/2013/FractGeomet.pdf
- Budanov, P., Brovko, K., Cherniuk, A., Pantielieieva, I., Oliynyk, Y., Shmatko, N., Vasyuchenko, P. (2018). Improvement of safety of autonomous electrical installations by implementing a method for calculating the electrolytic grounding electrodes parameters. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 20–28. doi: http://doi.org/10.15587/1729-4061.2018.144925
- Mandelbrot, B. (2010). Fraktalnaya geometriya prirody. Izhevskiy institut kompyuternykh issledovaniy, NITS «Regulyarnaya i khaoticheskaya dinamika», 656.
- Zinovev, V. V., Beltyukov, A. P., Bartenev, O. A. (2016). Matematicheskaya model fotoelektricheskogo preobrazovatelya s ispolzovaniem W-funktsii Lamberta. Izvestiya Instituta matematiki i informatiki, 2 (48), 22–30.
- Slipchenko, N. I. (2011). Eksperimentalnye issledovaniya kharakteristik solnechnoy paneli KV 150/24(12) v zimnikh usloviyakh. Vestnik Nats. tekhn. un-ta "KHPI". Temat. vyp.: Novye resheniya v sovremennykh tekhnologiyakh, 24, 86–92. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/12877
- Said, S., Massoud, A., Benammar, M., Ahmed, S. (2012). A matlab/simulink based photovoltaic array model employing simpowersystems toolbox. Journal of Energy and Power Engineering, 6, 1965–1975. Available at: https://www.researchgate.net/publication/285027675_A_matlabsimulink_based_photovoltaic_array_model_employing_simpowersystems_toolbox
- Savrasov, F. V., Kovalev, I. K. (2012). Issledovanie effektivnosti raboty solnechnoy batarei v polevykh usloviyakh. Izvestiya Tomskogo politekhnicheskogo universiteta, 321 (4), 165–168. Available at: http://earchive.tpu.ru/handle/11683/4482
- Lunin, L. S., Paschenko, A. S. (2011). Modelirovanie i issledovanie kharakteristik fotoelektricheskikh preobrazovateley na osnove GaAs i GaSb. ZHurnal tekhnicheskoy fiziki, 81, 71–76. Available at: https://elibrary.ru/item.asp?id=20325216
- Cotfas, D. T., Cotfas, P. A., Kaplanis, S. (2013). Methods to determine the dc parameters of solar cells: A critical review. Renewable and Sustainable Energy Reviews, 28, 588–596. doi: http://doi.org/10.1016/j.rser.2013.08.017
- Rudenko, D. V., Vasyuchenko, P. V. (2019). Modeling of physical processes of the solar photovoltaic. Vcheni zapysky Tavriiskoho natsionalnoho universytetu im. V. I. Vernadskoho. Seriia: Tekhnichni nauky, 30 (69), 42–47.
- Kolosov, R. V. (2019). Modelling of solar panels. Intellektualnaya elektrotekhnika, 2 (6), 85–93.
- Laudani, A., Riganti Fulginei, F., Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms. Solar Energy, 103, 316–326. doi: http://doi.org/10.1016/j.solener.2014.02.014
- Lineykin, S., Averbukh, M., Kuperman, A. (2014). An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renewable and Sustainable Energy Reviews, 30, 282–289. doi: http://doi.org/10.1016/j.rser.2013.10.015
- Dongue, S. B., Njomo, D., Tamba, J. G., Ebengai, L. (2012). Modeling of Electrical Response of Illuminated Crystalline Photovoltaic Modules Using Four- and Five-Parameter Models. International Journal of Emerging Technology and Advanced Engineering, 2, 612–619.
- Cubas, J., Pindado, S., Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247, 467–474. doi: http://doi.org/10.1016/j.jpowsour.2013.09.008
- Peng, L., Sun, Y., Meng, Z., Wang, Y., Xu, Y. (2013). A new method for determining the characteristics of solar cells. Journal of Power Sources, 227, 131–136. doi: http://doi.org/10.1016/j.jpowsour.2012.07.061
- Orioli, A., Di Gangi, A. (2013). A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied Energy, 102, 1160–1177. doi: http://doi.org/10.1016/j.apenergy.2012.06.036
- Seifi, M., Che Soh, A. Bt., Izzrib, N., Wahab Abd., Khair, M., Hassan, B. (2013). A Comparative Study of PV Models in Matlab/Simulink. International Scholarly and Scientific Research & Innovation, 7 (2), 97–102.
- Cubas, J., Pindado, S., de Manuel, C. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies, 7 (7), 4098–4115. doi: http://doi.org/10.3390/en7074098
- Cucchiella, F., D’Adamo, I., Gastaldi, M. (2016). A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies. Energy Conversion and Management, 129, 62–74. doi: http://doi.org/10.1016/j.enconman.2016.09.075
- Villalva, M. G., Gazoli, J. R., Filho, E. R. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24 (5), 1198–1208. doi: http://doi.org/10.1109/tpel.2009.2013862
- Stanly, L. S., Divya, R., Nair, M. G. (2015). Grid connected solar photovoltaic system with Shunt Active Filtering capability under transient load conditions. IEEE International Conference on Advancements in Power and Energy, 345–350. doi: http://doi.org/10.1109/tapenergy.2015.7229643
- Salmi, Т., Bouzguenda, M., Gastli, A., Masmoundi, A. (2012). MATLAB/Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable energy researcg, 2, 213–218.
- Patil Sahebrao, N., Prasad, R. C. (2014). Design and simulation of MPPT algorithm for solar energy system using Simulink model. International Journal of Research in Engineering and Applied Sciences, 2 (1), 37–40. Available at: https://www.semanticscholar.org/paper/DESIGN-AND-SIMULATION-OF-MPPT-ALGORITHM-FOR-SOLAR-Sahebrao-Prasad/69aec92f9308bc20f0771649c81f854e8907adba
- Surya Kumari, J., Sai Babu, Ch. (2012). Mathematical Modelling and Simulation of Photovoltaic Cell Using MATLAB/Simulink Environment and PLECS Blockset. International Journal of Electrical and Computer Engineering, 2 (1), 26–34. doi: http://doi.org/10.11591/ijece.v2i1.117
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pavlo Budanov, Ihor Kyrysov, Kostiantyn Brovko, Dmytro Rudenko, Pavlo Vasiuchenko, Andrii Nosyk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.