Devising a conceptual method for generating cryptocompression codograms of images without loss of information quality
DOI:
https://doi.org/10.15587/1729-4061.2021.237359Keywords:
cryptocompression, coding, information protection, floating scheme, differentiated basis, service componentAbstract
Along with the widespread use of digital images, an urgent scientific and applied issue arose regarding the need to reduce the volume of video information provided it is confidential and reliable. To resolve this issue, cryptocompression coding methods could be used. However, there is no method that summarizes all processing steps. This paper reports the development of a conceptual method for the cryptocompression coding of images on a differentiated basis without loss of information quality. It involves a three-stage technology for the generation of cryptocompression codograms. The first two cascades provide for the generation of code structures for information components while ensuring their confidentiality and key elements as a service component. On the third cascade of processing, it is proposed to manage the confidentiality of the service component. The code values for the information components of nondeterministic length are derived out on the basis of a non-deterministic number of elements of the source video data in a reduced dynamic range. The generation of service data is proposed to be organized in blocks of initial images with a dimension of 16×16 elements. The method ensures a decrease in the volume of source images during the generation of cryptocompression codograms, by 1.14–1.58 times (12–37 %), depending on the degree of their saturation. This is 12.7‒23.4 % better than TIFF technology and is 9.6‒17.9 % better than PNG technology. The volume of the service component of cryptocompression codograms is 1.563 % of the volume of the source video data or no more than 2.5 % of the total code stream. That reduces the amount of data for encryption by up to 40 times compared to TIFF and PNG technologies. The devised method does not introduce errors into the data in the coding process and refers to methods without loss of information quality.
References
- Barannik, V., Sidchenko, S., Barannik, N., Barannik, V. (2021). Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 103–115. doi: https://doi.org/10.15587/1729-4061.2021.235521
- Sharma, R., Bollavarapu, S. (2015). Data Security using Compression and Cryptography Techniques. International Journal of Computer Applications, 117 (14), 15–18. doi: https://doi.org/10.5120/20621-3342
- Jasuja, B., Pandya, A. (2015). Crypto-Compression System: An Integrated Approach using Stream Cipher Cryptography and Entropy Encoding. International Journal of Computer Applications, 116 (21), 34–41. doi: https://doi.org/10.5120/20463-2831
- Gonzalez, R., Woods, R. (2018). Digital Image Processing. Pearson, 1168.
- Announcing the Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197 (2001). NIST, 51. Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
- Rivest, R. L., Shamir, A., Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21 (2), 120–126. doi: https://doi.org/10.1145/359340.359342
- Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM, 34 (4), 30–44. doi: https://doi.org/10.1145/103085.103089
- ISO/IEC 15444-1:2019. Information technology – JPEG 2000 image coding system – Part 1: Core coding system. Available at: https://www.iso.org/standard/78321.html
- Ramakrishnan, M. (Ed.) (2019). Cryptographic and Information Security. Approaches for Images and Videos. CRC Press, 986. doi: https://doi.org/10.1201/9780429435461
- Kurihara, K., Shiota, S., Kiya, H. (2015). An encryption-then-compression system for JPEG standard. 2015 Picture Coding Symposium (PCS). doi: https://doi.org/10.1109/pcs.2015.7170059
- Naor, M., Shamir, A. (1995). Visual cryptography. Lecture Notes in Computer Science, 1–12. doi: https://doi.org/10.1007/bfb0053419
- Chen, C.-C., Wu, W.-J. (2014). A secure Boolean-based multi-secret image sharing scheme. Journal of Systems and Software, 92, 107–114. doi: https://doi.org/10.1016/j.jss.2014.01.001
- Dufaux, F., Ebrahimi, T. (2006). Toward a secure JPEG. Applications of Digital Image Processing XXIX. doi: https://doi.org/10.1117/12.686963
- Yuan, L., Korshunov, P., Ebrahimi, T. (2015). Secure JPEG scrambling enabling privacy in photo sharing. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). doi: https://doi.org/10.1109/fg.2015.7285022
- ISO/IEC 15444-8:2007. Information technology – JPEG 2000 image coding system: Secure JPEG 2000 – Part 8. Available at: https://www.iso.org/standard/37382.html
- Alimpiev, A. N., Barannik, V. V., Sidchenko, S. A. (2017). The method of cryptocompression presentation of videoinformation resources in a generalized structurally positioned space. Telecommunications and Radio Engineering, 76 (6), 521–534. doi: https://doi.org/10.1615/telecomradeng.v76.i6.60
- Barannik, V., Sidchenko, S., Barannik, D. (2020). Technology for Protecting Video Information Resources in the Info-Communication Space. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). Kyiv, 29–33. Available at: https://ieeexplore.ieee.org/document/9349324
- DSTU 7624:2014. Informatsiyni tekhnolohiyi. Kryptohrafichnyi zakhyst informatsiyi. Alhorytm symetrychnoho blokovoho peretvorennia (2014). Kyiv, 39.
- DSTU HOST 28147:2009. Systema obrobky informatsiyi. Zakhyst kryptohrafichnyi. Alhorytm kryptohrafichnoho peretvorennia (HOST 28147-89) (2008). Kyiv, 20.
- Barannik, V., Sidchenko, S., Barannik, N., Khimenko, A. (2021). The method of masking overhead compaction in video compression systems. Radioelectronic and computer systems, 2, 51–63. doi: https://doi.org/10.32620/reks.2021.2.05
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vladimir Barannik, Serhii Sidchenko, Dmitriy Barannik, Sergii Shulgin, Valeriy Barannik, Anton Datsun
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.