Analysis of Cr(III) ions adsorption on the surface of algae: implications for the removal of heavy metal ions from water
DOI:
https://doi.org/10.15587/1729-4061.2021.237532Keywords:
algae, Spirulina platensis, Cr(III) ions, removal degree, adsorption, Zeta-potentialAbstract
For purposeful control of the adsorption process, a comprehensive study of the properties of the original cells and the effect of metal ions on them is necessary. In this regard, the features of the adsorption of Cr(III) ions on the cell surface of Spirulina platensis algae were studied. FTIR spectroscopy revealed that the main functional groups responsible for the binding of Cr(III) ions are carboxyl, hydroxyl, amino, and phosphate groups on the surface of algae. The adsorption data were processed using the Langmuir and Freundlich models. It is shown that the maximum adsorption of Cr(III) ions on the surface of algae cells is 31.25 mg/g. The Freundlich constant 1/n is 0.65. The study of the effect of the concentration of Cr(III) ions on the Zeta-potential of algae cells revealed an abnormal increase in the negative value of the ζ – potential at 10–5 mol/L, caused by the release of an additional amount of anionic functional groups to the surface. A further increase in the concentration of Cr(III) ions in the algae suspension leads to a decrease in the ζ – potential and recharge of the surface at C>10–2 mol/L. It was found that the adsorption of Cr(III) ions also affects the morphology of the cell surface. If before contact with Cr(III) ions, the surface of algae cells is represented as a uniform green grid, after adsorption of Cr(III) ions, the surface becomes green-brown, with swollen spirals. The study of the effect of pH on the adsorption and desorption processes shows an increase in the desorption of Cr(III) ions from the surface of algae during acidification of the medium. The adsorption reaches a maximum value in the pH range of 6–7. In the region of optimal Cr(III)/biosorbent ion ratios, the recovery rate of Cr(III) reaches 98.5–99.3 %.
References
- Mustapha, M. U., Halimoon, N. (2015). Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 7 (5). doi: http://doi.org/10.4172/1948-5948.1000219
- Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4 (4), 361–377. doi: http://doi.org/10.1016/j.arabjc.2010.07.019
- Ayangbenro, A., Babalola, O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 14 (1), 94. doi: http://doi.org/10.3390/ijerph14010094
- Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., Shin, K.-H. (2015). Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi: http://doi.org/10.1016/j.ecoenv.2014.12.019
- Li, P.-S., Tao, H.-C. (2013). Cell surface engineering of microorganisms towards adsorption of heavy metals. Critical Reviews in Microbiology, 41 (2), 140–149. doi: http://doi.org/10.3109/1040841x.2013.813898
- Farhan, S. N., Khadom, A. A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. International Journal of Industrial Chemistry, 6 (2), 119–130. doi: http://doi.org/10.1007/s40090-015-0038-8
- Yin, K., Wang, Q., Lv, M., Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553–1563. doi: http://doi.org/10.1016/j.cej.2018.10.226
- Ramírez Calderón, O. A., Abdeldayem, O. M., Pugazhendhi, A., Rene, E. R. (2020). Current Updates and Perspectives of Biosorption Technology: an Alternative for the Removal of Heavy Metals from Wastewater. Current Pollution Reports, 6 (1), 8–27. doi: http://doi.org/10.1007/s40726-020-00135-7
- Samuel, R. T., Menon, L. P., Bhavana, V., Sathya, P. (2019). Studies on Phycoremediation of Chlorpyrifos and Heavy Metal Chromium Using Algae. International Journal of Pharmacy and Biological Sciences, 9, 2230–7605. Available at: https://www.researchgate.net/publication/330619850
- Shokri Khoubestani, R., Mirghaffari, N., Farhadian, O. (2014). Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent. Environmental Progress & Sustainable Energy, 34 (4), 949–956. doi: http://doi.org/10.1002/ep.12071
- Asnaoui, H., Khalis, M., Laaziri, A., Elbougarrani, O. (2014). Decontamination of a solution of chromium IV by marine algae (ulva-lactuca). International Journal of Innovative Research in Advanced Engineering, 1, 62.
- Prasad, A., Singh, A. K., Chand, S., Chanotiya, C. S., Patra, D. D. (2010). Effect of Chromium and Lead on Yield, Chemical Composition of Essential Oil, and Accumulation of Heavy Metals of Mint Species. Communications in Soil Science and Plant Analysis, 41 (18), 2170–2186. doi: http://doi.org/10.1080/00103624.2010.504798
- Bulgariu, D., Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource Technology, 103 (1), 489–493. doi: http://doi.org/10.1016/j.biortech.2011.10.016
- Hassan, S. W., Kassas, H. Y. (2012). Biosorption of cadmium from aqueous solutions using a local fungus Aspergillus cristatus (Glaucus Group). African Journal of Biotechnology, 11 (9), 2276–2286. doi: http://doi.org/10.5897/ajb11.3140
- Jencarova, J., Luptakova, A. (2012). The elimination of heavy metal ions from waters by biogenic iron sulphide. Chemical Eng. Transaction, 28, 205–210. doi: https://doi.org/10.3303/CET1228035
- Ali, H. S., Kandil, N. F. E. S., Ibraheem, I. B. M. (2020). Biosorption of Pb2+ and Cr3+ ions from aqueous solution by two brown marine macroalgae: an equilibrium and kinetic study. Desalination and water treatment, 206, 250–262. doi: http://doi.org/10.5004/dwt.2020.26314
- Hu, Q., Liu, Y., Gu, X., Zhao, Y. (2017). Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe 2 O 4 magnetic nanoparticles. Chemosphere, 181, 328–336. doi: http://doi.org/10.1016/j.chemosphere.2017.04.049
- Tavengwa, N., Cukrowska, E., Chimuka, L. (2014). Synthesis of bulk ion-imprinted polymers (IIPs) embedded with oleic acid coated Fe3O4 for selective extraction of hexavalent uranium. Water SA, 40 (4), 623–630. doi: http://doi.org/10.4314/wsa.v40i4.7
- Tounsadi, H., Khalidi, A., Abdennouri, M., Barka, N. (2015). Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering, 3 (2), 822–830. doi: http://doi.org/10.1016/j.jece.2015.03.022
- Rahman, M. S., Sathasivam, K. V. (2015). Heavy Metal Adsorption ontoKappaphycussp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. BioMed Research International, 2015, 1–13. doi: http://doi.org/10.1155/2015/126298
- Dmytryk, A., Saeid, A., Chojnacka, K. (2014). Biosorption of Microelements bySpirulina: Towards Technology of Mineral Feed Supplements. The Scientific World Journal, 2014, 1–15. doi: http://doi.org/10.1155/2014/356328
- Marzbali, M. H., Mir, A. A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5 (2), 1946–1956. doi: http://doi.org/10.1016/j.jece.2017.03.018
- Chojnacka, K., Chojnacki, A., Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59 (1), 75–84. doi: http://doi.org/10.1016/j.chemosphere.2004.10.005
- Lakhbayeva, Zh., Kurmangazhy, G., Tazhibayeva, S., Artykova, D., Musabekov, K. (2019). Possibility of water purification from Cu2+, Pb2+ and Cr3+ by using vermiculite. Journal of Chemical Technology and Metallurgy, 54 (3), 603–609.
- Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry, 9 (6), 846–853. doi: http://doi.org/10.1016/j.arabjc.2013.11.008
- Leusbrock, I., Metz, S. J., Rexwinkel, G., Versteeg, G. F. (2010). The solubilities of phosphate and sulfate salts in supercritical water. The Journal of Supercritical Fluids, 54 (1), 1–8. doi: http://doi.org/10.1016/j.supflu.2010.03.003
- Maignan, A., Bréard, Y., Guilmeau, E., Gascoin, F. (2012). Transport, thermoelectric, and magnetic properties of a dense Cr2S3 ceramic. Journal of Applied Physics, 112 (1), 013716. doi: http://doi.org/10.1063/1.4736417
- Gojkovic, Z., Shchukarev, A., Ramstedt, M., Funk, C. (2020). Cryogenic X-ray photoelectron spectroscopy determines surface composition of algal cells and gives insights into their spontaneous sedimentation. Algal Research, 47, 101836. doi: http://doi.org/10.1016/j.algal.2020.101836
- Hadjoudja, S., Deluchat, V., Baudu, M. (2010). Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342 (2), 293–299. doi: http://doi.org/10.1016/j.jcis.2009.10.078
- Sigel, A., Sigel, H., Sigel, R. K. O. (2011). Metal Ions in Life Sciences. Royal Society of Chemistry, 8.
- Gupta, V. K., Nayak, A., Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20 (1), 1–18. doi: http://doi.org/10.4491/eer.2015.018
- Monteiro, C. M., Castro, P. M. L., Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28 (2), 299–311. doi: http://doi.org/10.1002/btpr.1504
- Bishnoi, N. R., Kumar, R., Kumar, S., Rani, S. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. Journal of Hazardous Materials, 145 (1-2), 142–147. doi: http://doi.org/10.1016/j.jhazmat.2006.10.093
- Bertagnolli, C., da Silva, M. G. C., Guibal, E. (2014). Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chemical Engineering Journal, 237, 362–371. doi: http://doi.org/10.1016/j.cej.2013.10.024
- Podolskaya, V. I., Voytenko, E. Yu., Yakubenko, L. N., Ulberg, Z. R., TSyganovich, E. A., Ermakov, V. N., Grischenko, N. I. (2010). Vliyanie slabogo impulsnogo elektricheskogo polya na vzaimodeystvie nekotorykh mikroorganizmov c ionami serebra i medi. Nanostrukturnoe materialovedenie, 2, 64–72. Available at: http://dspace.nbuv.gov.ua/handle/123456789/62715
- Kőnig-Péter, A., Kilár, F., Felinger, A., Pernyeszi, T. (2015). Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals. Journal of the Serbian Chemical Society, 80 (3), 407–419. doi: http://doi.org/10.2298/jsc140321060p
- Rehman, A., Shakoori, F. R., Shakoori, A. R. (2008). Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresource Technology, 99 (9), 3890–3895. doi: http://doi.org/10.1016/j.biortech.2007.08.007
- Gagrai, M. K., Das, C., Golder, A. K. (2013). Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: Kinetic studies. Chemosphere, 93 (7), 1366–1371. doi: http://doi.org/10.1016/j.chemosphere.2013.08.021
- Zhang, R., Tian, Y. (2020). Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. Journal of Leather Science and Engineering, 2 (1). doi: http://doi.org/10.1186/s42825-020-00038-9
- Lodi, A., Soletto, D., Solisio, C., Converti, A. (2008). Chromium(III) removal by Spirulina platensis biomass. Chemical Engineering Journal, 136 (2-3), 151–155. doi: http://doi.org/10.1016/j.cej.2007.03.032
- Jobby, R., Jha, P., Yadav, A. K., Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255–266. doi: http://doi.org/10.1016/j.chemosphere.2018.05.050
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Zhadra Tattibayeva, Sagdat Tazhibayeva, Wojciech Kujawski, Bolatkhan Zayadan, Kuanyshbek Мusabekov, Akbota Adilbekova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.