Analysis of Cr(III) ions adsorption on the surface of algae: implications for the removal of heavy metal ions from water

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.237532

Keywords:

algae, Spirulina platensis, Cr(III) ions, removal degree, adsorption, Zeta-potential

Abstract

For purposeful control of the adsorption process, a comprehensive study of the properties of the original cells and the effect of metal ions on them is necessary. In this regard, the features of the adsorption of Cr(III) ions on the cell surface of Spirulina platensis algae were studied. FTIR spectroscopy revealed that the main functional groups responsible for the binding of Cr(III) ions are carboxyl, hydroxyl, amino, and phosphate groups on the surface of algae. The adsorption data were processed using the Langmuir and Freundlich models. It is shown that the maximum adsorption of Cr(III) ions on the surface of algae cells is 31.25 mg/g. The Freundlich constant 1/n is 0.65. The study of the effect of the concentration of Cr(III) ions on the Zeta-potential of algae cells revealed an abnormal increase in the negative value of the ζ – potential at 10–5 mol/L, caused by the release of an additional amount of anionic functional groups to the surface. A further increase in the concentration of Cr(III) ions in the algae suspension leads to a decrease in the ζ – potential and recharge of the surface at C>10–2 mol/L. It was found that the adsorption of Cr(III) ions also affects the morphology of the cell surface. If before contact with Cr(III) ions, the surface of algae cells is represented as a uniform green grid, after adsorption of Cr(III) ions, the surface becomes green-brown, with swollen spirals. The study of the effect of pH on the adsorption and desorption processes shows an increase in the desorption of Cr(III) ions from the surface of algae during acidification of the medium. The adsorption reaches a maximum value in the pH range of 6–7. In the region of optimal Cr(III)/biosorbent ion ratios, the recovery rate of Cr(III) reaches 98.5–99.3 %.

Author Biographies

Zhadra Tattibayeva, Al-Farabi Kazakh National University

Postgraduate Student

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Sagdat Tazhibayeva, Al-Farabi Kazakh National University

Doctor of Chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Wojciech Kujawski, Nicolaus Copernicus University in Torun

Doctor of Chemical Sciences, PhD, Professor

Department of Physical Chemistry and Physical Chemistry of Polymers

Bolatkhan Zayadan, Al-Farabi Kazakh National University

Doctor of Biological Sciences, Professor

Department of Biotechnology

Kuanyshbek Мusabekov, Al-Farabi Kazakh National University

Doctor of Chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Akbota Adilbekova, Al-Farabi Kazakh National University

PhD, Associate Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

References

  1. Mustapha, M. U., Halimoon, N. (2015). Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 7 (5). doi: http://doi.org/10.4172/1948-5948.1000219
  2. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4 (4), 361–377. doi: http://doi.org/10.1016/j.arabjc.2010.07.019
  3. Ayangbenro, A., Babalola, O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 14 (1), 94. doi: http://doi.org/10.3390/ijerph14010094
  4. Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., Shin, K.-H. (2015). Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi: http://doi.org/10.1016/j.ecoenv.2014.12.019
  5. Li, P.-S., Tao, H.-C. (2013). Cell surface engineering of microorganisms towards adsorption of heavy metals. Critical Reviews in Microbiology, 41 (2), 140–149. doi: http://doi.org/10.3109/1040841x.2013.813898
  6. Farhan, S. N., Khadom, A. A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. International Journal of Industrial Chemistry, 6 (2), 119–130. doi: http://doi.org/10.1007/s40090-015-0038-8
  7. Yin, K., Wang, Q., Lv, M., Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553–1563. doi: http://doi.org/10.1016/j.cej.2018.10.226
  8. Ramírez Calderón, O. A., Abdeldayem, O. M., Pugazhendhi, A., Rene, E. R. (2020). Current Updates and Perspectives of Biosorption Technology: an Alternative for the Removal of Heavy Metals from Wastewater. Current Pollution Reports, 6 (1), 8–27. doi: http://doi.org/10.1007/s40726-020-00135-7
  9. Samuel, R. T., Menon, L. P., Bhavana, V., Sathya, P. (2019). Studies on Phycoremediation of Chlorpyrifos and Heavy Metal Chromium Using Algae. International Journal of Pharmacy and Biological Sciences, 9, 2230–7605. Available at: https://www.researchgate.net/publication/330619850
  10. Shokri Khoubestani, R., Mirghaffari, N., Farhadian, O. (2014). Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent. Environmental Progress & Sustainable Energy, 34 (4), 949–956. doi: http://doi.org/10.1002/ep.12071
  11. Asnaoui, H., Khalis, M., Laaziri, A., Elbougarrani, O. (2014). Decontamination of a solution of chromium IV by marine algae (ulva-lactuca). International Journal of Innovative Research in Advanced Engineering, 1, 62.
  12. Prasad, A., Singh, A. K., Chand, S., Chanotiya, C. S., Patra, D. D. (2010). Effect of Chromium and Lead on Yield, Chemical Composition of Essential Oil, and Accumulation of Heavy Metals of Mint Species. Communications in Soil Science and Plant Analysis, 41 (18), 2170–2186. doi: http://doi.org/10.1080/00103624.2010.504798
  13. Bulgariu, D., Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource Technology, 103 (1), 489–493. doi: http://doi.org/10.1016/j.biortech.2011.10.016
  14. Hassan, S. W., Kassas, H. Y. (2012). Biosorption of cadmium from aqueous solutions using a local fungus Aspergillus cristatus (Glaucus Group). African Journal of Biotechnology, 11 (9), 2276–2286. doi: http://doi.org/10.5897/ajb11.3140
  15. Jencarova, J., Luptakova, A. (2012). The elimination of heavy metal ions from waters by biogenic iron sulphide. Chemical Eng. Transaction, 28, 205–210. doi: https://doi.org/10.3303/CET1228035
  16. Ali, H. S., Kandil, N. F. E. S., Ibraheem, I. B. M. (2020). Biosorption of Pb2+ and Cr3+ ions from aqueous solution by two brown marine macroalgae: an equilibrium and kinetic study. Desalination and water treatment, 206, 250–262. doi: http://doi.org/10.5004/dwt.2020.26314
  17. Hu, Q., Liu, Y., Gu, X., Zhao, Y. (2017). Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe 2 O 4 magnetic nanoparticles. Chemosphere, 181, 328–336. doi: http://doi.org/10.1016/j.chemosphere.2017.04.049
  18. Tavengwa, N., Cukrowska, E., Chimuka, L. (2014). Synthesis of bulk ion-imprinted polymers (IIPs) embedded with oleic acid coated Fe3O4 for selective extraction of hexavalent uranium. Water SA, 40 (4), 623–630. doi: http://doi.org/10.4314/wsa.v40i4.7
  19. Tounsadi, H., Khalidi, A., Abdennouri, M., Barka, N. (2015). Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering, 3 (2), 822–830. doi: http://doi.org/10.1016/j.jece.2015.03.022
  20. Rahman, M. S., Sathasivam, K. V. (2015). Heavy Metal Adsorption ontoKappaphycussp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. BioMed Research International, 2015, 1–13. doi: http://doi.org/10.1155/2015/126298
  21. Dmytryk, A., Saeid, A., Chojnacka, K. (2014). Biosorption of Microelements bySpirulina: Towards Technology of Mineral Feed Supplements. The Scientific World Journal, 2014, 1–15. doi: http://doi.org/10.1155/2014/356328
  22. Marzbali, M. H., Mir, A. A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5 (2), 1946–1956. doi: http://doi.org/10.1016/j.jece.2017.03.018
  23. Chojnacka, K., Chojnacki, A., Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59 (1), 75–84. doi: http://doi.org/10.1016/j.chemosphere.2004.10.005
  24. Lakhbayeva, Zh., Kurmangazhy, G., Tazhibayeva, S., Artykova, D., Musabekov, K. (2019). Possibility of water purification from Cu2+, Pb2+ and Cr3+ by using vermiculite. Journal of Chemical Technology and Metallurgy, 54 (3), 603–609.
  25. Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry, 9 (6), 846–853. doi: http://doi.org/10.1016/j.arabjc.2013.11.008
  26. Leusbrock, I., Metz, S. J., Rexwinkel, G., Versteeg, G. F. (2010). The solubilities of phosphate and sulfate salts in supercritical water. The Journal of Supercritical Fluids, 54 (1), 1–8. doi: http://doi.org/10.1016/j.supflu.2010.03.003
  27. Maignan, A., Bréard, Y., Guilmeau, E., Gascoin, F. (2012). Transport, thermoelectric, and magnetic properties of a dense Cr2S3 ceramic. Journal of Applied Physics, 112 (1), 013716. doi: http://doi.org/10.1063/1.4736417
  28. Gojkovic, Z., Shchukarev, A., Ramstedt, M., Funk, C. (2020). Cryogenic X-ray photoelectron spectroscopy determines surface composition of algal cells and gives insights into their spontaneous sedimentation. Algal Research, 47, 101836. doi: http://doi.org/10.1016/j.algal.2020.101836
  29. Hadjoudja, S., Deluchat, V., Baudu, M. (2010). Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342 (2), 293–299. doi: http://doi.org/10.1016/j.jcis.2009.10.078
  30. Sigel, A., Sigel, H., Sigel, R. K. O. (2011). Metal Ions in Life Sciences. Royal Society of Chemistry, 8.
  31. Gupta, V. K., Nayak, A., Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20 (1), 1–18. doi: http://doi.org/10.4491/eer.2015.018
  32. Monteiro, C. M., Castro, P. M. L., Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28 (2), 299–311. doi: http://doi.org/10.1002/btpr.1504
  33. Bishnoi, N. R., Kumar, R., Kumar, S., Rani, S. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. Journal of Hazardous Materials, 145 (1-2), 142–147. doi: http://doi.org/10.1016/j.jhazmat.2006.10.093
  34. Bertagnolli, C., da Silva, M. G. C., Guibal, E. (2014). Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chemical Engineering Journal, 237, 362–371. doi: http://doi.org/10.1016/j.cej.2013.10.024
  35. Podolskaya, V. I., Voytenko, E. Yu., Yakubenko, L. N., Ulberg, Z. R., TSyganovich, E. A., Ermakov, V. N., Grischenko, N. I. (2010). Vliyanie slabogo impulsnogo elektricheskogo polya na vzaimodeystvie nekotorykh mikroorganizmov c ionami serebra i medi. Nanostrukturnoe materialovedenie, 2, 64–72. Available at: http://dspace.nbuv.gov.ua/handle/123456789/62715
  36. Kőnig-Péter, A., Kilár, F., Felinger, A., Pernyeszi, T. (2015). Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals. Journal of the Serbian Chemical Society, 80 (3), 407–419. doi: http://doi.org/10.2298/jsc140321060p
  37. Rehman, A., Shakoori, F. R., Shakoori, A. R. (2008). Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresource Technology, 99 (9), 3890–3895. doi: http://doi.org/10.1016/j.biortech.2007.08.007
  38. Gagrai, M. K., Das, C., Golder, A. K. (2013). Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: Kinetic studies. Chemosphere, 93 (7), 1366–1371. doi: http://doi.org/10.1016/j.chemosphere.2013.08.021
  39. Zhang, R., Tian, Y. (2020). Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. Journal of Leather Science and Engineering, 2 (1). doi: http://doi.org/10.1186/s42825-020-00038-9
  40. Lodi, A., Soletto, D., Solisio, C., Converti, A. (2008). Chromium(III) removal by Spirulina platensis biomass. Chemical Engineering Journal, 136 (2-3), 151–155. doi: http://doi.org/10.1016/j.cej.2007.03.032
  41. Jobby, R., Jha, P., Yadav, A. K., Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255–266. doi: http://doi.org/10.1016/j.chemosphere.2018.05.050

Downloads

Published

2021-08-30

How to Cite

Tattibayeva, Z., Tazhibayeva, S., Kujawski, W., Zayadan, B., Мusabekov K., & Adilbekova, A. (2021). Analysis of Cr(III) ions adsorption on the surface of algae: implications for the removal of heavy metal ions from water. Eastern-European Journal of Enterprise Technologies, 4(10(112), 14–23. https://doi.org/10.15587/1729-4061.2021.237532