Development of a method for estimating the effect of transformation of the normalized frequency mismatch function of a coherent bundle of radio pulses on the quality of radar frequency resolution
DOI:
https://doi.org/10.15587/1729-4061.2021.238155Keywords:
coherent bundle of radio pulses, resolution, mismatch function, phase fluctuationsAbstract
The necessity of studying the influence of the transformation of the frequency mismatch function of a coherent bundle of radio pulses on the quality of solving the radar frequency resolution problem is substantiated. This solution determines the effectiveness of radar observation of high-speed and maneuvering individual and group aerodynamic objects. The method is based on explicit expressions for calculating the normalized frequency mismatch function of a coherent bundle of radio pulses, taking into account its transformation due to the radial motion of high-speed and maneuvering individual and group aerodynamic objects. The estimation of the potential frequency resolution of bundles with different numbers of radio pulses with typical parameters for a coherent pulse radar is carried out. Possible values of frequency resolution under the additive effect of uncorrelated internal noise of the radar receiver and the multiplicative effect of correlated phase fluctuations of the radar signal are estimated. With an insignificant multiplicative effect of correlated phase fluctuations, a twofold increase in the number of radio pulses in a bundle provides an improvement in the frequency resolution (reduction of the width of the normalized frequency mismatch function) by 100 %. With the predominant multiplicative effect of these fluctuations, a twofold increase in the number of radio pulses results in an improvement in the frequency resolution by about 40 %. The developed method is of great theoretical and practical importance for the further development of the radar theory of high-speed and maneuvering individual and group aerodynamic objects.
References
- Shirman, Ya. D. (Ed.) (2007). Radioelektronnye sistemy: osnovy postroeniya i teoriya. Moscow: Radiotekhnika, 512.
- Melvin, W. L., Scheer, J. A. (2012). Principles of Modern Radar: Advanced techniques. IET. doi: https://doi.org/10.1049/sbra020e
- Zohuri, B. (2020). Fundaments of Radar. Radar Energy Warfare and the Challenges of Stealth Technology, 1–110. doi: https://doi.org/10.1007/978-3-030-40619-6_1
- Klemm, R., Nickel, U., Gierull, C., Lombardo, P., Griffiths, H., Koch, W. (Eds.) (2017). Novel Radar Techniques and Applications Volume 1: Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar. IET. doi: https://doi.org/10.1049/sbra512f
- Herasimov S., Roshchupkin E., Kutsenko V., Riazantsev, S., Nastishin, Yu. (2020). Statistical analysis of harmonic signals for testing of Electronic Devices. International Journal of Emerging Trends in Engineering Research, 8 (7), 3791–3798. doi: https://doi.org/10.30534/ijeter/2020/143872020
- Kovalchuk, A., Oleshchuk, M., Karlov, V., Karpenko, O., Biesova, O., Lukashuk, O. (2021). Analysis of sensitivity of target tracking systems to external interference in multichannel radars with fixed parameters. Advanced Information Systems, 5 (1), 82–86. doi: https://doi.org/10.20998/2522-9052.2021.1.11
- Savchenko, V., Laptiev, O., Kolos, O. et. al. (2020). Hidden Transmitter Localization Accuracy Model Based on Multi-Position Range Measurement. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 246–251.
- Barton, D. K. (2012). Radar Equations for Modern Radar. Artech House, 264.
- Herasimov, S., Belevshchuk, Y., Ryapolov, I., Volkov, A., Borysenko, M., Tokar, O. (2020) Modeling technology of radar scattering of the fourth generation EF-2000 Typhoon multipurpose aircraft model. International Journal of Emerging Trends in Engineering Research, 8 (9), 5075–5082. doi: https://doi.org/10.30534/ijeter/2020/30892020
- Minervin, N. N., Karlov, D. V., Konovalov, V. M. (2013). Features of influencing the ionosphere on radar signals at accelerated motion of space objects. Applied Radio Electronics, 12 (4), 530–532.
- Karlov, V., Kuznietsov, O., Belousov, V., Tuzikov, S., Oleschuk, M., Petrushenko, V. (2021). Accuracy of measurement of aerodynamic objects angular coordinates under tropospheric refraction conditions. Control, Navigation and Communication Systems, 1 (63), 146–152. doi: https://doi.org/10.26906/sunz.2021.1.146
- Volosyuk, V. K., Gulyaev, Y. V., Kravchenko, V. F., Kutuza, B. G., Pavlikov, V. V., Pustovoit, V. I. (2014). Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. Journal of Communications Technology and Electronics, 59 (2), 97–118. doi: https://doi.org/10.1134/s1064226914020090
- Klochko, V. K. (2016). Algorithms of 3D radio-wave imaging in airborne Doppler radar. Radioelectronics and Communications Systems, 59 (8), 335–343. doi: https://doi.org/10.3103/s0735272716080021
- Karlov, V. D., Radiukov, A. O., Pichuhin, I. M., Karlov, D. V. (2015). Statistical descriptions of radio-location signals, reflected from local objects in the conditions of anomalous refraction. Science and Technology of the Air Force of Ukraine, 4 (21), 71–74.
- Karlov, V., Kuznietsov, O., Artemenko, A., Karlov, A. (2019). Evaluation of the accuracy of measuring the radial velocity of a target with an exponential and alternating decrease in phase correlation of the burst radio signal. Advanced Information Systems, 3 (1), 71–75. doi: https://doi.org/10.20998/2522-9052.2019.1.12
- Kuznietsov, O., Karlov, V., Karlov, A., Kiyko, A., Lukashuk, O., Biesova, O., Petrushenko, M. (2020). Estimation of the Dispersion of the Error in Measuring the Frequency of a Pack with Correlated Fluctuations in the Initial Phases of its Radio Pulses. 2020 IEEE Ukrainian Microwave Week (UkrMW). doi: https://doi.org/10.1109/ukrmw49653.2020.9252588
- Sedyshev, Yu., Atamanskiy, D. (2010). Radioelektronnye sistemy. Kharkiv: Kharkivskyi unyversytet Povitrianykh Syl, 418.
- Minervin, N. N., Vasyuta, K. S. (2013). Measure of angular resolution capability and measuring accuracy of a wave arrival corner in the presence of irregular distortions of its front and additive noise. Applied Radio Electronics, 12 (4), 484–486.
- Mogyla, A. A. (2014). Application of stochastic probing radio signals for the range-velocity ambiguity resolution in doppler weather radars. Radioelectronics and Communications Systems, 57 (12), 542–552. doi: https://doi.org/10.3103/s0735272714120036
- Herasimov, S. (2020). Aircraft flight route search method with the use of cellular automata. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5077–5082. doi: https://doi.org/10.30534/ijatcse/2020/129942020
- Yevseiev, S., Kuznietsov, O., Herasimov, S., Horielyshev, S., Karlov, A., Kovalov, I. et. al. (2021). Development of an optimization method for measuring the Doppler frequency of a packet taking into account the fluctuations of the initial phases of its radio pulses. Eastern-European Journal of Enterprise Technologies, 2 (9 (110)), 6–15. doi: https://doi.org/10.15587/1729-4061.2021.229221
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Serhii Yevseiev, Oksana Biesova, Dmytro Kyrychenko, Olena Lukashuk, Stanislav Milevskyi, Serhii Pohasii, Iryna Husarova, Anna Goloskokova, Volodymyr Sobchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.