Analysis of mechanical strength of weight fraction variation sugar palm fiber as polypropylene-elastomer matrix reinforcement of hybrid composite

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.238507

Keywords:

hybrid composite, sugar palm fiber (Arenga pinnata), polypropylene, elastomer, mechanical properties

Abstract

Currently, the availability of polypropylene, elastomer and sugar palm fiber (Arenga pinnata) is very abundant, which has a good impact on the potential for the development of new composite materials that have good properties and characteristics. Composites are generally a new material composed of two or more different materials with the aim of producing a new material that has better properties than the constituent material. In this study, polypropylene (PP) plastic and elastomer were used as a composite matrix reinforced with sugar palm fiber (Arenga pinnata). The purpose of this study was to determine the value of tensile strength, impact strength, and bending strength of composites with a weight fraction of 20 % (80:20), 30 % (70:30), and 40 % (60:40). Based on the results of the research on hybrid composites of polypropylene and fiber-reinforced elastomers, composites with a weight fraction of 20 % (80:20) got the lowest tensile strength value of 1.153 MPa, while composites with a weight fraction of 40 % (60:40) obtained the highest tensile strength value of 2.613 MPa. Composites with a weight fraction of 20 % (80:20) got the lowest tensile strain value of 0.0049 and the highest tensile strain value of 0.0067 was found in composites with a weight fraction of 40 % (60:40). For the impact strength, the 40 % (40:60) weight fraction composite got the lowest value of 45248.234 kJ/mm2, while the 20 % (80:20) weight fraction composite got the highest impact strength of 17649.97 kJ/mm2. For bending strength results, the composite with a weight fraction of 20 % (80:20) obtained the lowest bending strength of 1.7778 MPa, while the composite with a weight fraction of 30 % (70:30) obtained the highest bending strength of 4.8867 MPa. The highest bending strain was found in the composite with a weight fraction of 20 % (80:20), which was 0.0207.

Supporting Agency

  • I would like to thank those who have helped in this research: Armando ST, Suminto ST, Stephen ST, Ni Wayan Sugiarti ST, and I Gede Artha Negara ST MT, so that this research can be completed properly

Author Biographies

I Gusti Ngurah Nitya Santhiarsa, Udayana University

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

I Gusti Ayu Agung Praharsini, Udayana University

Doctorate in Medical  

Department of Medical

I Gusti Agung Alit Suryawati, Udayana University

Doctorate in Social Science and Political Science

Department of Social Science and Political Science

Pratikto Pratikto, Brawijaya University

Professor in Mechanical Engineering

Department of Mechanical Engineering

References

  1. Bartos, A., Kócs, J., Anggono, J., Móczó, J., Pukánszky, B. (2021). Effect of fiber attrition, particle characteristics and interfacial adhesion on the properties of PP/sugarcane bagasse fiber composites. Polymer Testing, 98, 107189. doi: https://doi.org/10.1016/j.polymertesting.2021.107189
  2. Zhao, J., Qiao, Y., Wang, G., Wang, C., Park, C. B. (2020). Lightweight and tough PP/talc composite foam with bimodal nanoporous structure achieved by microcellular injection molding. Materials & Design, 195, 109051. doi: https://doi.org/10.1016/j.matdes.2020.109051
  3. Amir, N., Abidin, K. A. Z., Shiri, F. B. M. (2017). Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Engineering, 184, 573–580. doi: https://doi.org/10.1016/j.proeng.2017.04.140
  4. Niloy Rahaman, M., Sahadat Hossain, M., Razzak, M., Uddin, M. B., Chowdhury, A. M. S., Khan, R. A. (2019). Effect of dye and temperature on the physico-mechanical properties of jute/PP and jute/LLDPE based composites. Heliyon, 5 (6), e01753. doi: https://doi.org/10.1016/j.heliyon.2019.e01753
  5. Szebényi, G., Blößl, Y., Hegedüs, G., Tábi, T., Czigany, T., Schledjewski, R. (2020). Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors. Composites Science and Technology, 199, 108317. doi: https://doi.org/10.1016/j.compscitech.2020.108317
  6. Yarali, E., Ali Farajzadeh, M., Noroozi, R., Dabbagh, A., Khoshgoftar, M. J., Mirzaali, M. J. (2020). Magnetorheological elastomer composites: Modeling and dynamic finite element analysis. Composite Structures, 254, 112881. doi: https://doi.org/10.1016/j.compstruct.2020.112881
  7. Krishnaiah, P., Ratnam, C. T., Manickam, S. (2017). Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrasonics Sonochemistry, 34, 729–742. doi: https://doi.org/10.1016/j.ultsonch.2016.07.008
  8. He, Y., Zhou, Y., Wu, H., Bai, Z., Chen, C., Chen, X. et. al. (2020). Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Materials Chemistry and Physics, 252, 123247. doi: https://doi.org/10.1016/j.matchemphys.2020.123247
  9. Kuranchie, C., Yaya, A., Bensah, Y. D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – A review. Scientific African, 11, e00722. doi: https://doi.org/10.1016/j.sciaf.2021.e00722
  10. Dawit, J. B., Lemu, H. G., Regassa, Y., Akessa, A. D. (2021). Investigation of the mechanical properties of Acacia tortilis fiber reinforced natural composite. Materials Today: Proceedings, 38, 2953–2958. doi: https://doi.org/10.1016/j.matpr.2020.09.308
  11. Chegdani, F., El Mansori, M., Taki, M., Hamade, R. (2021). On the role of capillary and viscous forces on wear and frictional performances of natural fiber composites under lubricated polishing. Wear, 477, 203858. doi: https://doi.org/10.1016/j.wear.2021.203858
  12. Bambach, M. R. (2020). Durability of natural fibre epoxy composite structural columns: High cycle compression fatigue and moisture ingress. Composites Part C: Open Access, 2, 100013. doi: https://doi.org/10.1016/j.jcomc.2020.100013
  13. Rajesh, M., Jayakrishna, K., Sultan, M. T. H., Manikandan, M., Mugeshkannan, V., Shah, A. U. M., Safri, S. N. A. (2020). The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. Journal of Materials Research and Technology, 9 (5), 10305–10315. doi: https://doi.org/10.1016/j.jmrt.2020.07.033
  14. Ramakrishnan, K. R., Sarlin, E., Kanerva, M., Hokka, M. (2021). Experimental study of adhesively bonded natural fibre composite – steel hybrid laminates. Composites Part C: Open Access, 5, 100157. doi: https://doi.org/10.1016/j.jcomc.2021.100157
  15. Radzi, A. M., Sapuan, S. M., Jawaid, M., Mansor, M. R. (2019). Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8 (5), 3988–3994. doi: https://doi.org/10.1016/j.jmrt.2019.07.007
  16. Mohd Izwan, S., Sapuan, S. M., Zuhri, M. Y. M., Mohamed, A. R. (2020). Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties. Journal of Materials Research and Technology, 9 (3), 5805–5814. doi: https://doi.org/10.1016/j.jmrt.2020.03.105
  17. Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8 (5), 3726–3732. doi: https://doi.org/10.1016/j.jmrt.2019.06.032
  18. Safri, S. N. A., Sultan, M. T. H., Shah, A. U. M. (2020). Characterization of benzoyl treated sugar palm/glass fibre hybrid composites. Journal of Materials Research and Technology, 9 (5), 11563–11573. doi: https://doi.org/10.1016/j.jmrt.2020.08.057
  19. Santhiarsa, N., Pratikto, Sonief, A. A., Marsyahyo, E. (2014). The Effect of Alkali Treatment on Metal Content In Sugar Palm Fiber. Australian Journal of Basic and Applied Sciences, 8 (10), 614–619. Available at: https://123dok.com/document/q7wg28dz-effect-alkali-treatment-metal-content-sugar-palm-fiber.html
  20. Mohammed, A. A., Bachtiar, D., Rejab, M. R. M., Siregar, J. P. (2018). Effect of microwave treatment on tensile properties of sugar palm fibre reinforced thermoplastic polyurethane composites. Defence Technology, 14 (4), 287–290. doi: https://doi.org/10.1016/j.dt.2018.05.008
  21. Sapuan, S. M., Bachtiar, D. (2012). Mechanical Properties of Sugar Palm Fibre Reinforced High Impact Polystyrene Composites. Procedia Chemistry, 4, 101–106. doi: https://doi.org/10.1016/j.proche.2012.06.015
  22. Asim, M., Jawaid, M., Khan, A., Asiri, A. M., Malik, M. A. (2020). Effects of Date Palm fibres loading on mechanical, and thermal properties of Date Palm reinforced phenolic composites. Journal of Materials Research and Technology, 9 (3), 3614–3621. doi: https://doi.org/10.1016/j.jmrt.2020.01.099
  23. Ramlee, N. A., Jawaid, M., Zainudin, E. S., Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8 (4), 3466–3474. doi: https://doi.org/10.1016/j.jmrt.2019.06.016
  24. Das, S. C., Paul, D., Grammatikos, S. A., Siddiquee, M. A. B., Papatzani, S., Koralli, P. et. al. (2021). Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Composite Structures, 276, 114525. doi: https://doi.org/10.1016/j.compstruct.2021.114525
  25. Ali, M. F., Hossain, M. S., Ahmed, S., Sarwaruddin Chowdhury, A. M. (2021). Fabrication and characterization of eco-friendly composite materials from natural animal fibers. Heliyon, 7 (5), e06954. doi: https://doi.org/10.1016/j.heliyon.2021.e06954
  26. Rajak, D. K., Wagh, P. H., Moustabchir, H., Pruncu, C. I. (2021). Improving the tensile and flexural properties of reinforced epoxy composites by using cobalt filled and carbon/glass fiber. Forces in Mechanics, 4, 100029. doi: https://doi.org/10.1016/j.finmec.2021.100029
  27. Candido, V. S., Silva, A. C. R. da, Simonassi, N. T., Luz, F. S. da, Monteiro, S. N. (2017). Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. Journal of Materials Research and Technology, 6 (4), 334–338. doi: https://doi.org/10.1016/j.jmrt.2017.06.001
  28. Shanmugam, V., Rajendran, D. J. J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U. et. al. (2021). The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing, 93, 106925. doi: https://doi.org/10.1016/j.polymertesting.2020.106925

Downloads

Published

2021-10-31

How to Cite

Nitya Santhiarsa, I. G. N. ., Praharsini, I. G. A. A., Alit Suryawati, I. G. A., & Pratikto, P. (2021). Analysis of mechanical strength of weight fraction variation sugar palm fiber as polypropylene-elastomer matrix reinforcement of hybrid composite. Eastern-European Journal of Enterprise Technologies, 5(12(113), 20–29. https://doi.org/10.15587/1729-4061.2021.238507

Issue

Section

Materials Science