Implementation of packed column for biogas purification as fuel for motorcycle injection systems for performance improvement

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239027

Keywords:

biogas, packed column, torque, power, SFC, BMEP, motorcycles, injection, performance

Abstract

The use of gasoline for primary energy consumption can reduce crude oil, contained in the earth. The development of alternative fuels such as biogas and biofuel is very critical to overcoming this problem. Biogas requires purification to remove some contaminant particles that interfere with the combustion process. The packed column is generally applied to absorb and separate gas and liquid mixture. It is more efficient due to the liquid flows down the column of steam naturally without the supply of energy from outside the system. This study focuses on determining the effect of the packed column biogas purification process. Biogas is applied as an alternative fuel in spark-ignition engines (SIE). The test is carried out using a chassis dynamometer to obtain power and torque data. The use of the packed column for biogas fuel purification can produce higher performance compared to unrefined biogas. The unrefined biogas still contains impurities that can interfere with the combustion process. This condition is proven by measuring the power and torque of the vehicle on the chassis dynamometer, where the filtered biogas produces higher power and torque.

Tests were carried out both using the packed column and without the packed column. Variations from speed to torque, to power, to SFC and BMEP are considered. In this study, validation is in good agreement with previous studies. Overall, the results show that the average error between using the packed column and without the packed column for torque, power, SFC and BMEP is increased by approximately 7 %. Purification of biogas using the packed column using Ca(OH)2 can bind CO2 and obtain pure methane gas with a higher heating value.

In conclusion, the packed column for biogas purification as fuel for motorcycle injection systems can be applied

Supporting Agency

  • The authors would like to express their gratitude for financial support given by Institut Teknologi Adhi Tama Surabaya (ITATS)

Author Biographies

Syamsuri Syamsuri, Adhi Tama Institute of Technology Surabaya

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Yustia Wulandari Mirzayanti, Adhi Tama Institute of Technology Surabaya

Doctorate in Chemical Engineering

Department of Chemical Engineering

Zain Lillahulhaq, Adhi Tama Institute of Technology Surabaya

Master in Mechanical Engineering

Department of Mechanical Engineering

Achmad Bagus Hidayat, Adhi Tama Institute of Technology Surabaya

Undergraduate in Mechanical Engineering

Department of Mechanical Engineering

References

  1. Neshat, S. A., Mohammadi, M., Najafpour, G. D., Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308–322. doi: https://doi.org/10.1016/j.rser.2017.05.137
  2. Mu, L., Zhang, L., Zhu, K., Ma, J., Ifran, M., Li, A. (2020). Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Science of The Total Environment, 704, 135429. doi: https://doi.org/10.1016/j.scitotenv.2019.135429
  3. Fu, S., Angelidaki, I., Zhang, Y. (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, 39 (4), 336–347. doi: https://doi.org/10.1016/j.tibtech.2020.08.006
  4. Olugasa, T. T., Odesola, I. F., Oyewola, M. O. (2018). Biogas purification and compression for use in spark ignition engines. International Conference of Mechanical Engineering, Energy Technology and Management, IMEETMCON 2018. Available at: https://imeetmcon.com.ng/wp-content/uploads/2019/08/32.pdf
  5. Madhania, S., Abdurrahman, F. M., Naufal, M., Kusidanto, K., Machmudah, S., Winardi, S. (2021). Simultaneous Biogas Upgrade and Production of Precipitated Calcium Carbonate. IOP Conference Series: Materials Science and Engineering, 1053 (1), 012093. doi: https://doi.org/10.1088/1757-899x/1053/1/012093
  6. Hotta, S. K., Sahoo, N., Mohanty, K. (2019). Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas. Renewable Energy, 134, 1307–1319. doi: https://doi.org/10.1016/j.renene.2018.09.049
  7. Da Costa, R. B. R., Valle, R. M., Hernández, J. J., Malaquias, A. C. T., Coronado, C. J. R., Pujatti, F. J. P. (2020). Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis. Applied Energy, 261, 114438. doi: https://doi.org/10.1016/j.apenergy.2019.114438
  8. Bui, V. G., Tran, V. N., Hoang, A. T., Bui, T. M. T., Vo, A. V. (2020). A simulation study on a port-injection SI engine fueled with hydroxy-enriched biogas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–17. doi: https://doi.org/10.1080/15567036.2020.1804487
  9. Verma, S., Das, L. M., Kaushik, S. C. (2017). Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Conversion and Management, 138, 346–359. doi: https://doi.org/10.1016/j.enconman.2017.01.066
  10. Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294. doi: https://doi.org/10.1016/j.enconman.2017.08.035
  11. Pioquinto García, S., Garza Rodríguez, L. Á., Bustos Martínez, D., Cerino Córdova, F. de J., Soto Regalado, E., Giraudet, S., Dávila Guzmán, N. E. (2021). Siloxane removal for biogas purification by low cost mineral adsorbent. Journal of Cleaner Production, 286, 124940. doi: https://doi.org/10.1016/j.jclepro.2020.124940
  12. Noorain, R., Kindaichi, T., Ozaki, N., Aoi, Y., Ohashi, A. (2019). Biogas purification performance of new water scrubber packed with sponge carriers. Journal of Cleaner Production, 214, 103–111. doi: https://doi.org/10.1016/j.jclepro.2018.12.209
  13. Fernández-Delgado Juárez, M., Mostbauer, P., Knapp, A., Müller, W., Tertsch, S., Bockreis, A., Insam, H. (2018). Biogas purification with biomass ash. Waste Management, 71, 224–232. doi: https://doi.org/10.1016/j.wasman.2017.09.043
  14. Wang, G., Zhang, Z., Hao, Z. (2019). Recent advances in technologies for the removal of volatile methylsiloxanes: A case in biogas purification process. Critical Reviews in Environmental Science and Technology, 49 (24), 2257–2313. doi: https://doi.org/10.1080/10643389.2019.1607443
  15. Belaissaoui, B., Favre, E. (2018). Novel dense skin hollow fiber membrane contactor based process for CO2 removal from raw biogas using water as absorbent. Separation and Purification Technology, 193, 112–126. doi: https://doi.org/10.1016/j.seppur.2017.10.060
  16. Sutanto, R., Putra, I. G. B. D. M., Mulyanto, A. (2013). Pemanfaatan biogas termurnikan berbasis metode kalsinasi pada kendaraan bermotor. Dinamika Teknik Mesin, 3 (1), 34–40. doi: https://doi.org/10.29303/d.v3i1.86
  17. Sutanto, R., Alit, I. B., Nurchayati, N. (2014). Analisa unjuk kerja motor bakar berbahan bakar biogas termurnikan berbasis absorber Fe2O3. Dinamika Teknik Mesin, 4 (2), 83–87. doi: https://doi.org/10.29303/d.v4i2.56
  18. Monde, J. (2018). Pengaruh penggunaan tipe packing dalam pemisahan CO2 menggunakan K2CO3 berpromotor DEA dengan metode absorpsi reaktif dalam reaktor packed column. ITS Surabaya. Available at: https://repository.its.ac.id/50116/1/02211550012001-Master_Thesis.pdf
  19. Syamsuri, Mirzayanti, Y. W., Widjajanti, W. W., Bani, S. K. (2020). Pengaruh Variasi Konsentrasi NaOH sebagai Nutrisi pada Performansi Biogas Tipe Portabel. Journal of Research and Technology, 6 (2), 195–207. Available at: https://journal.unusida.ac.id/index.php/jrt/article/view/353/275
  20. Syamsuri (2020). Performansi biogas type drum portabel dengan variasi ph 6.8, 7, 7.2, 7.6, 7.8, 8. Jurnal Teknik Mesin UNISKA, 5 (2), 40–45. Available at: https://ojs.uniska-bjm.ac.id/index.php/JZR/article/view/4030/2647
  21. Gersen, S., van Essen, M., Darmeveil, H., Hashemi, H., Rasmussen, C. T., Christensen, J. M. et. al. (2016). Experimental and Modeling Investigation of the Effect of H2S Addition to Methane on the Ignition and Oxidation at High Pressures. Energy & Fuels, 31 (3), 2175–2182. doi: https://doi.org/10.1021/acs.energyfuels.6b02140
  22. Ilminnafik, N., Setiyawan, D. L., Sutjahjono, H., Rofiq, A., Hadi, A. S. (2019). Flame Characteristics of Biogas From Coffee Waste Materials. Journal of Physics: Conference Series, 1175, 012273. doi: https://doi.org/10.1088/1742-6596/1175/1/012273
  23. Munawaroh, J. (2010). Perancangan dan pembuatan miniatur penghasil biogas. Malang, Indonesia.
  24. Vidian, F., Putra, D. H. (2020). An Experimental on Small Scale Gasoline Engine Performance. Universal Journal of Mechanical Engineering, 8 (4), 237–241. doi: https://doi.org/10.13189/ujme.2020.080409

Downloads

Published

2021-08-31

How to Cite

Syamsuri, S., Mirzayanti, Y. W., Lillahulhaq, Z., & Hidayat, A. B. (2021). Implementation of packed column for biogas purification as fuel for motorcycle injection systems for performance improvement . Eastern-European Journal of Enterprise Technologies, 4(1(112), 86–93. https://doi.org/10.15587/1729-4061.2021.239027

Issue

Section

Engineering technological systems