Development of mathematical models of energy conversion processes in an induction motor supplied from an autonomous induction generator with parametric non-symmetry

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239146

Keywords:

induction generator, induction motor, mathematical model, hodograph, thermal model, regression analysis

Abstract

The paper presents studies of the system "induction generator-induction motor" with parametric asymmetry on a mathematical model to determine the quality of generated electricity in load operating modes. A mathematical model of the "induction generator-induction motor" system has been developed taking into account losses in steel and parametric asymmetry. The analysis of the transient characteristics of an induction generator when a motor load is connected in symmetrical and asymmetrical modes of operation is carried out. The results of changes in the main characteristics of an induction motor at various degrees of parametric asymmetry in the generator are presented. The quality of the generated electricity was analyzed based on the calculations of the unbalance coefficients for each of the operating modes. The assessment of the thermal state in steady-state conditions was carried out using an equivalent thermal equivalent circuit. Thermal transients were investigated when starting an induction motor from an autonomous energy source based on an induction generator. On a thermal mathematical model, the study of the effect of the output voltage asymmetry on the heating of the connected induction motor was carried out. It is shown that the asymmetry of the output voltage of an induction generator reaches 3–10 % and causes overheating of the windings in excess of the permissible values. A regression model has been developed for studying the operating conditions of an induction motor when powered by an induction generator with an asymmetry of the stator windings. The use of the obtained equations will make it possible to determine the most rational combination of factors affecting the heating of the stator windings of induction machines, in which they will not overheat above the maximum permissible temperature values of the corresponding insulation classes

Supporting Agency

  • The results were obtained within the project co-funded by the Polish National Agency for Academic Exchanges (PPN/BUA/2019/1/00016/U/00001).

Author Biographies

Volodymyr Chenchevoi, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Automatic Control Systems and Electric Drive

Valeriy Kuznetsov, Railway Research Institute

Doctor of Technical Sciences, Professor

Electric Power Department

Vitaliy Kuznetsov, National Metallurgical Academy of Ukraine

PhD, Associate Professor

Department of Electrical Engineering

Olga Chencheva, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Labor Protection, Civil and Industrial Safety

Iurii Zachepa, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Systems of Automatic Control and Electric Drive

Oleksii Chornyi, Kremenchuk Mykhailo Ostrohradskyi National University

Doctor of Technical Sciences, Professor

Department of Automatic Control Systems and Electric Drive

Maksim Kovzel, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine

PhD, Associate Professor

Viktor Kovalenko, Zaporizhzhia National University

Doctor of Technical Sciences, Professor

Department of Electrical Engineering and Energy Efficiency

Mykola Babyak, Dnipro National University of Railway Transport named after Academician V. Lazaryan

PhD, Associate Professor

Department of Transport Technologies

Serhii Levchenko, Zaporizhzhia National University

PhD, Associate Professor

Department of Electrical Engineering and Energy Efficiency

References

  1. Chornyi, O. P., Zachepa, I. V., Mazurenko, L. I., Buryakovskiy, S. G., Chenchevoi, V. V., Zachepa, N. V. (2020). Local autonomous sources of energy supply for emergencies. Tekhnichna Elektrodynamika, 5, 45–48. doi: http://doi.org/10.15407/techned2020.05.045
  2. Chenchevoi, V., Zachepa, I., Chornyi, O., Zachepa, N., Ogar, V., Shokarov, D. (2018). The Formed Autonomous Source for Power Supply of Single-Phase Consumers on the Basis of the Three-Phase Asynchronous Generator. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 110–115. doi: http://doi.org/10.1109/ieps.2018.8559522
  3. Kitsis, S. I. (2003). Asinkhronnye samovozbuzhdaiuschiesia generatory. Moscow: Energoatomizdat, 327. Available at: https://search.rsl.ru/ru/record/01002391609
  4. Toroptsev, N. D. (2004). Asinkhronnye generatory dlia avtonomnykh elektroenergeticheskikh ustanovok. Moscow: NTF «Energoprogress», 87. Available at: https://knigogid.ru/books/1844853-asinhronnye-generatory-dlya-avtonomnyh-elektroenergeticheskih-ustanovok
  5. Üçtuǧ, Y., Demirekler, M. (1988). Modelling, analysis and control of a wind-turbine driven self-excited induction generator. IEE Proceedings C Generation, Transmission and Distribution, 135 (4), 268–275. doi: http://doi.org/10.1049/ip-c.1988.0037
  6. Hallenius, K.-E., Vas, P., Brown, J. E. (1991). The analysis of a saturated self-excited asynchronous generator. IEEE Transactions on Energy Conversion, 6 (2), 336–345. doi: http://doi.org/10.1109/60.79641
  7. Abbou, A., Barara, M., Ouchatti, A., Akhenaz, M., Mahmoudi, H. (2013). Capacitance required analysis for self-excited induction generator. Journal of Theoretical and Applied Information Technology, 55 (3). Available at: https://www.researchgate.net/publication/287702318_Capacitance_required_analysis_for_self-excited_induction_generateur
  8. Simoes, M. G., Farret, F. A. (2004). Renewable Energy Systems: Design and Analysis with Induction Generators. London: CRC Press, 358. Available at: https://searchworks.stanford.edu/view/5660475
  9. Zagirnyak, M., Mamchur, D., Kalinov, A. (2014). A comparison of informative value of motor current and power spectra for the tasks of induction motor diagnostics. 2014 16th International Power Electronics and Motion Control Conference and Exposition, 540–545. doi: http://doi.org/10.1109/epepemc.2014.6980549
  10. Zagirnyak, M., Kalinov, A., Melnykov, V. (2017). Variable-frequency electric drive with a function of compensation for induction motor asymmetry. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Kyiv, 338–344. doi: http://doi.org/10.1109/ukrcon.2017.8100505
  11. Kuznetsova, Y., Kuznetsov, V., Tryputen, M., Kuznetsova, A., Tryputen, M., Babyak, M. (2019). Development and Verification of Dynamic Electromagnetic Model of Asynchronous Motor Operating in Terms of Poor-Quality Electric Power. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), 350–353. doi: http://doi.org/10.1109/mees.2019.8896598
  12. Zagirnyak, M., Melnykov, V., Kalinov, A. (2019). The review of methods and systems of fault-tolerant control of variable-frequency electric drives. Przeglad Elektrotechniczny, 95 (1), 141–144. doi: http://doi.org/10.15199/48.2019.01.36
  13. Melnykov, V., Kalinov, A. (2012). The increasing of energy characteristics of vector-controlled electric drives by means of compensation the induction motor parametrical asymmetry. Technical Electrodynamics, 3, 85–86. Available at: http://previous.techned.org.ua/2012_3/st40.pdf
  14. Zagirnyak, M., Kalinov, A., Chumachova, A. (2013). Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor. Eurocon 2013. Zagreb, 1033–1037. doi: http://doi.org/10.1109/eurocon.2013.6625108
  15. Razgildeev, G., Khramtsov, R. (2005). Issledovanie raboty asinkhronnogo generatora na individualnuiu set sredstvami imitatsionnogo modelirovaniia Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta, 1, 84–87. Available at: https://cyberleninka.ru/article/n/issledovanie-raboty-asinhronnogo-generatora-na-individualnuyu-set-sredstvami-imitatsionnogo-modelirovaniya
  16. Kim, C.-W., Jang, G.-H., Seo, S.-W., You, D.-J., Choi, J.-Y. (2020). Experimental verification and analysis of temperature characteristics of induction generator considering stator loss distribution. AIP Advances, 10 (1), 015139. doi: http://doi.org/10.1063/1.5130023
  17. Refoufi, L., Bentarzi, H., Dekhandji, F. Z. (2006). Voltage Unbalance Effects on Induction Motor Performance. Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization. Lisbonm 112–117. Available at: https://www.academia.edu/3284729/Voltage_Unbalance_Effects_on_Induction_Motor_Performance
  18. Adouni, A., J. Marques Cardoso, A. (2020). Thermal Analysis of Low-Power Three-Phase Induction Motors Operating under Voltage Unbalance and Inter-Turn Short Circuit Faults. Machines, 9 (1), 2. doi: http://doi.org/10.3390/machines9010002
  19. Zagirnyak, M., Kalinov, A., Melnykov, V., Stakhiv, P. (2016). Fault-tolerant control of an induction motor with broken stator electric circuit. 2016 Electric Power Networks (EPNet). doi: http://doi.org/10.1109/epnet.2016.7999372
  20. Kuznetsov, V., Tryputen, M., Tytiuk, V., Rozhnenko, Z., Levchenko, S., Kuznetsov, V. (2021). Modeling of thermal process in the energy system “Electrical network – asynchronous motor.” E3S Web of Conferences, 280, 05003. doi: http://doi.org/10.1051/e3sconf/202128005003
  21. Fedorov, M., Ivchenkov, N., Tkachenko, A. (2013). Osobennosti teplovogo sostoianiya asinkhronnykh dvigatelei pri nesimmetrii pitaiuschego napriazheniya. Nauchniy vestnik Donbasskoi gosudarstvennoi mashinostroitelnoi akademiyi, 1, 164–170. Available at: http://nbuv.gov.ua/UJRN/nvdgma_2013_1_25
  22. Pinchuk, O., Kutkovoi, I. (2009). Otsenka teplovogo sostoianiya asinkhronnogo dvigatelia po dannym kontrolia tokov statora pri nesimmetriyi pitaiuschego napriazheniya. Naukovі pratsі Donetskogo natsіonalnogo tekhnіchnogo unіversitetu. Serіia: Elektrotekhnіka і energetika, 9 (158), 100–196. Available at: http://ea.donntu.org:8080/bitstream/123456789/5008/1/Art_34_190.pdf
  23. Pustovetov, M., Sinyavskiy, I. (2011). On dynamics of thermal processes in induction motor under supply voltage unbalance. Vestnik of Don State Technical University, 11 (8-1), 1227–1237. Available at: https://www.vestnik-donstu.ru/jour/article/download/849/844
  24. Zagirnyak, M., Chenchevoi, V., Ogar, V., Yatsiuk, R. (2020). Refining induction machine characteristics at high saturation of steel. Przeglad Elektrotechniczny, 96 (11), 119–123. doi: http://doi.org/10.15199/48.2020.11.24
  25. Kuznetsov. V., Nikolenko, A. (2015). Models of operating asynchronous engines at poor-quality electricity. Eastern-European Journal of Enterprise Technologies, 1 (8 (73)), 37–42. doi: http://doi.org/10.15587/1729-4061.2015.36755
  26. Zagirnyak, M., Prus, V., Rodkin, D., Zachepa, I., Chenchevoi, V. (2019). A refined method for the calculation of steel losses at alternating current. Archives of Electrical Engineering, 68 (2), 295–308. doi: http://doi.org/10.24425/aee.2019.128269
  27. Lv, X., Sun, D., Sun, L. (2019). Determination of Iron Loss Coefficients of Ferromagnetic Materials Used in Cryogenic Motors. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). doi: http://doi.org/10.1109/icems.2019.8922160
  28. Liu, G., Liu, M., Zhang, Y., Wang, H., Gerada, C. (2020). High-Speed Permanent Magnet Synchronous Motor Iron Loss Calculation Method Considering Multiphysics Factors. IEEE Transactions on Industrial Electronics, 67 (7), 5360–5368. doi: http://doi.org/10.1109/tie.2019.2934075
  29. Iakimov, V. V. (1996). Problemy ucheta poter v stali pri raschete perekhodnykh protsessov v elektricheskikh mashinakh peremennogo toka. Tez. dokl. II Mezhdunarodnoi konferentsii po elektromekhanike i elektrotekhnologii, CHast 1. Krym, 172–174.
  30. Iakimov, V. V., Shestakov, A. V. (1997). Uchet poter v stali v sinkhronnykh mashinakh. Elektrotekhnika i energetika. Kirov, 2, 49−52.
  31. Nedelcu, S., Ritchie, E., Leban, K., Ghita, C., Trifu, I. (2013). Iron losses evaluation in soft magnetic materials with a sinusoidal voltage supply. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE). doi: http://doi.org/10.1109/atee.2013.6563461
  32. Ionel, D. M., Popescu, M., McGilp, M. I., Miller, T. J. E., Dellinger, S. J., Heideman, R. J. (2007). Computation of Core Losses in Electrical Machines Using Improved Models for Laminated Steel. IEEE Transactions on Industry Applications, 43 (6), 1554–1564. doi: http://doi.org/10.1109/tia.2007.908159
  33. Qiu, Y., Zhang, W., Cao, M., Feng, Y., Infield, D. (2015). An Electro-Thermal Analysis of a Variable-Speed Doubly-Fed Induction Generator in a Wind Turbine. Energies, 8 (5), 3386–3402. doi: http://doi.org/10.3390/en8053386
  34. Hodgins, N., Mueller, M. A., Tease, W. K., Staton, D. (2010). Thermal model of an induction generator in oscillating water column wave energy converter. 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). doi: http://doi.org/10.1049/cp.2010.0020
  35. Stephen Ejiofor, O., Justin, U., Damian Benneth, N., Uche, O. (2019). Development and thermal modeling of an induction machine. International Journal of Engineering & Technology, 8 (4), 500–508. doi: http://doi.org/10.14419/ijet.v8i4.29727
  36. Badran, O., Sarhan, H., Alomour, B. (2012). Thermal Performance Analysis of Induction Motor. International Journal of Heat and Technology, 30 (1), 75–88.
  37. Shreiner, R. T., Kostylev, A. V., Krivoviaz, V. K., Shilin, S. I. (2008). Elektromekhanicheskie i teplovye rezhimy asinkhronnykh dvigatelei v sistemakh chastotnogo regulirovaniia. Ekaterinburg: GOU VPO “RGPPU”, 361. Available at: https://www.elibrary.ru/item.asp?id=21333083
  38. Chenchevoi, V., Romashykhin, I., Romashykhina, Z. I., Al-Mashakbeh, A. S. (2017). Analysis of the special features of the thermal process in an induction generator at high saturation of the magnetic system. Electrical Engineering & Electromechanics, 3, 16–18. doi: http://doi.org/10.20998/2074-272x.2017.3.02
  39. Tryputen, N., Kuznetsov, V., Kuznetsova, Y. (2019). About the Possibility of Researching the Optimal Automatic Control System on a Physical Model of a Thermal Object. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 1244–1248. doi: http://doi.org/10.1109/ukrcon.2019.8879830
  40. Aarniovuori, L., Lindh, P., Karkkainen, H., Niemela, M., Pyrhonen, J., Cao, W. (2019). Analytical Evaluation of High-Efficiency Induction Motor Losses. 2019 IEEE International Electric Machines & Drives Conference (IEMDC). San Diego, 1501–1507. doi: http://doi.org/10.1109/iemdc.2019.8785380
  41. EN 50160-2010 (2010). Voltage characteristics of electricity supplied by public distribution networks. Available at: https://standards.iteh.ai/catalog/standards/clc/18a86a7c-e08e-405e-88cb-8a24e5fedde5/en-50160-2010#:~:text=CLC%2FTC%208X-,Voltage%20characteristics%20of%20electricity%20supplied%20by%20public%20electricity%20networks,networks%20under%20normal%20operating%20conditions
  42. GOST 13109–97 Elektricheskaia energiia. Sovmestimost tekhnicheskikh sredstv elektromagnitnaia. Normy kachestva elektricheskoi energii v sistemakh elektrosnabzheniia obschego naznacheniia (1999). Minsk: BelGISS, 31. Available at: http://odz.gov.ua/lean_pro/standardization/files/elektromagnitnaja_sovmestimost_2014_03_11_1.pdf
  43. GOST 30804.4.7-2013. Sovmestimost tekhnicheskikh sredstv elektromagnitnaia. Obschee rukovodstvo po sredstvam izmerenii i izmereniyam garmonik i intergarmonik dlia sistem elektrosnabzheniia i podkliuchaemykh k nim tekhnicheskikh sredstv (2013). Moscow: Standartinform. Available at: https://shop.znak.store/gost/oks-33/oks-33-100/oks-33-100-10/gost-30804472013-iec-61000472009-sovmestimost-tehnicheskih-sredstv-elektromagnitnaya-obshee-rukovodstvo-po-sredstvam-izmerenij-i-izmereniyam-garmonik-i-intergarmonik-dlya-sistem-elektrosnabzheniya-i-p
  44. Sistemy elektricheskoi izoliatsiyi. Otsenka nagrevostoikosti i klassifikatsiya: GOST 8865-93 (1993). Kyiv: Gosstandart Ukrainy, 14.
  45. Adler, Iu. P., Markova, E. V., Granovskii, Iu. V. (1976). Planirovanie eksperimenta pri poiske optimalnykh usloviy. Moscow: Nauka, 279.
  46. Borovikov, V. (2003). STATISTICA. Iskusstvo analiza dannykh na kompiutere: Dlia professionalov. Saint Petersburg: Piter, 688.
  47. Chenchevoi, V., Zachepa, I., Chornyi, O., Chencheva, O., Yatsiuk, R. (2020). Electric Power Quality Induction Generator with Parametric Asymmetry. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 504–508. doi: http://doi.org/10.1109/khpiweek51551.2020.9250097

Downloads

Published

2021-08-31

How to Cite

Chenchevoi, V., Kuznetsov, V. ., Kuznetsov, V., Chencheva, O., Zachepa, I., Chornyi, O., Kovzel, M., Kovalenko, V., Babyak, M., & Levchenko, S. (2021). Development of mathematical models of energy conversion processes in an induction motor supplied from an autonomous induction generator with parametric non-symmetry. Eastern-European Journal of Enterprise Technologies, 4(8(112), 67–82. https://doi.org/10.15587/1729-4061.2021.239146

Issue

Section

Energy-saving technologies and equipment