Development of mathematical models of energy conversion processes in an induction motor supplied from an autonomous induction generator with parametric non-symmetry
DOI:
https://doi.org/10.15587/1729-4061.2021.239146Keywords:
induction generator, induction motor, mathematical model, hodograph, thermal model, regression analysisAbstract
The paper presents studies of the system "induction generator-induction motor" with parametric asymmetry on a mathematical model to determine the quality of generated electricity in load operating modes. A mathematical model of the "induction generator-induction motor" system has been developed taking into account losses in steel and parametric asymmetry. The analysis of the transient characteristics of an induction generator when a motor load is connected in symmetrical and asymmetrical modes of operation is carried out. The results of changes in the main characteristics of an induction motor at various degrees of parametric asymmetry in the generator are presented. The quality of the generated electricity was analyzed based on the calculations of the unbalance coefficients for each of the operating modes. The assessment of the thermal state in steady-state conditions was carried out using an equivalent thermal equivalent circuit. Thermal transients were investigated when starting an induction motor from an autonomous energy source based on an induction generator. On a thermal mathematical model, the study of the effect of the output voltage asymmetry on the heating of the connected induction motor was carried out. It is shown that the asymmetry of the output voltage of an induction generator reaches 3–10 % and causes overheating of the windings in excess of the permissible values. A regression model has been developed for studying the operating conditions of an induction motor when powered by an induction generator with an asymmetry of the stator windings. The use of the obtained equations will make it possible to determine the most rational combination of factors affecting the heating of the stator windings of induction machines, in which they will not overheat above the maximum permissible temperature values of the corresponding insulation classes
Supporting Agency
- The results were obtained within the project co-funded by the Polish National Agency for Academic Exchanges (PPN/BUA/2019/1/00016/U/00001).
References
- Chornyi, O. P., Zachepa, I. V., Mazurenko, L. I., Buryakovskiy, S. G., Chenchevoi, V. V., Zachepa, N. V. (2020). Local autonomous sources of energy supply for emergencies. Tekhnichna Elektrodynamika, 5, 45–48. doi: http://doi.org/10.15407/techned2020.05.045
- Chenchevoi, V., Zachepa, I., Chornyi, O., Zachepa, N., Ogar, V., Shokarov, D. (2018). The Formed Autonomous Source for Power Supply of Single-Phase Consumers on the Basis of the Three-Phase Asynchronous Generator. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 110–115. doi: http://doi.org/10.1109/ieps.2018.8559522
- Kitsis, S. I. (2003). Asinkhronnye samovozbuzhdaiuschiesia generatory. Moscow: Energoatomizdat, 327. Available at: https://search.rsl.ru/ru/record/01002391609
- Toroptsev, N. D. (2004). Asinkhronnye generatory dlia avtonomnykh elektroenergeticheskikh ustanovok. Moscow: NTF «Energoprogress», 87. Available at: https://knigogid.ru/books/1844853-asinhronnye-generatory-dlya-avtonomnyh-elektroenergeticheskih-ustanovok
- Üçtuǧ, Y., Demirekler, M. (1988). Modelling, analysis and control of a wind-turbine driven self-excited induction generator. IEE Proceedings C Generation, Transmission and Distribution, 135 (4), 268–275. doi: http://doi.org/10.1049/ip-c.1988.0037
- Hallenius, K.-E., Vas, P., Brown, J. E. (1991). The analysis of a saturated self-excited asynchronous generator. IEEE Transactions on Energy Conversion, 6 (2), 336–345. doi: http://doi.org/10.1109/60.79641
- Abbou, A., Barara, M., Ouchatti, A., Akhenaz, M., Mahmoudi, H. (2013). Capacitance required analysis for self-excited induction generator. Journal of Theoretical and Applied Information Technology, 55 (3). Available at: https://www.researchgate.net/publication/287702318_Capacitance_required_analysis_for_self-excited_induction_generateur
- Simoes, M. G., Farret, F. A. (2004). Renewable Energy Systems: Design and Analysis with Induction Generators. London: CRC Press, 358. Available at: https://searchworks.stanford.edu/view/5660475
- Zagirnyak, M., Mamchur, D., Kalinov, A. (2014). A comparison of informative value of motor current and power spectra for the tasks of induction motor diagnostics. 2014 16th International Power Electronics and Motion Control Conference and Exposition, 540–545. doi: http://doi.org/10.1109/epepemc.2014.6980549
- Zagirnyak, M., Kalinov, A., Melnykov, V. (2017). Variable-frequency electric drive with a function of compensation for induction motor asymmetry. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Kyiv, 338–344. doi: http://doi.org/10.1109/ukrcon.2017.8100505
- Kuznetsova, Y., Kuznetsov, V., Tryputen, M., Kuznetsova, A., Tryputen, M., Babyak, M. (2019). Development and Verification of Dynamic Electromagnetic Model of Asynchronous Motor Operating in Terms of Poor-Quality Electric Power. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), 350–353. doi: http://doi.org/10.1109/mees.2019.8896598
- Zagirnyak, M., Melnykov, V., Kalinov, A. (2019). The review of methods and systems of fault-tolerant control of variable-frequency electric drives. Przeglad Elektrotechniczny, 95 (1), 141–144. doi: http://doi.org/10.15199/48.2019.01.36
- Melnykov, V., Kalinov, A. (2012). The increasing of energy characteristics of vector-controlled electric drives by means of compensation the induction motor parametrical asymmetry. Technical Electrodynamics, 3, 85–86. Available at: http://previous.techned.org.ua/2012_3/st40.pdf
- Zagirnyak, M., Kalinov, A., Chumachova, A. (2013). Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor. Eurocon 2013. Zagreb, 1033–1037. doi: http://doi.org/10.1109/eurocon.2013.6625108
- Razgildeev, G., Khramtsov, R. (2005). Issledovanie raboty asinkhronnogo generatora na individualnuiu set sredstvami imitatsionnogo modelirovaniia Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta, 1, 84–87. Available at: https://cyberleninka.ru/article/n/issledovanie-raboty-asinhronnogo-generatora-na-individualnuyu-set-sredstvami-imitatsionnogo-modelirovaniya
- Kim, C.-W., Jang, G.-H., Seo, S.-W., You, D.-J., Choi, J.-Y. (2020). Experimental verification and analysis of temperature characteristics of induction generator considering stator loss distribution. AIP Advances, 10 (1), 015139. doi: http://doi.org/10.1063/1.5130023
- Refoufi, L., Bentarzi, H., Dekhandji, F. Z. (2006). Voltage Unbalance Effects on Induction Motor Performance. Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization. Lisbonm 112–117. Available at: https://www.academia.edu/3284729/Voltage_Unbalance_Effects_on_Induction_Motor_Performance
- Adouni, A., J. Marques Cardoso, A. (2020). Thermal Analysis of Low-Power Three-Phase Induction Motors Operating under Voltage Unbalance and Inter-Turn Short Circuit Faults. Machines, 9 (1), 2. doi: http://doi.org/10.3390/machines9010002
- Zagirnyak, M., Kalinov, A., Melnykov, V., Stakhiv, P. (2016). Fault-tolerant control of an induction motor with broken stator electric circuit. 2016 Electric Power Networks (EPNet). doi: http://doi.org/10.1109/epnet.2016.7999372
- Kuznetsov, V., Tryputen, M., Tytiuk, V., Rozhnenko, Z., Levchenko, S., Kuznetsov, V. (2021). Modeling of thermal process in the energy system “Electrical network – asynchronous motor.” E3S Web of Conferences, 280, 05003. doi: http://doi.org/10.1051/e3sconf/202128005003
- Fedorov, M., Ivchenkov, N., Tkachenko, A. (2013). Osobennosti teplovogo sostoianiya asinkhronnykh dvigatelei pri nesimmetrii pitaiuschego napriazheniya. Nauchniy vestnik Donbasskoi gosudarstvennoi mashinostroitelnoi akademiyi, 1, 164–170. Available at: http://nbuv.gov.ua/UJRN/nvdgma_2013_1_25
- Pinchuk, O., Kutkovoi, I. (2009). Otsenka teplovogo sostoianiya asinkhronnogo dvigatelia po dannym kontrolia tokov statora pri nesimmetriyi pitaiuschego napriazheniya. Naukovі pratsі Donetskogo natsіonalnogo tekhnіchnogo unіversitetu. Serіia: Elektrotekhnіka і energetika, 9 (158), 100–196. Available at: http://ea.donntu.org:8080/bitstream/123456789/5008/1/Art_34_190.pdf
- Pustovetov, M., Sinyavskiy, I. (2011). On dynamics of thermal processes in induction motor under supply voltage unbalance. Vestnik of Don State Technical University, 11 (8-1), 1227–1237. Available at: https://www.vestnik-donstu.ru/jour/article/download/849/844
- Zagirnyak, M., Chenchevoi, V., Ogar, V., Yatsiuk, R. (2020). Refining induction machine characteristics at high saturation of steel. Przeglad Elektrotechniczny, 96 (11), 119–123. doi: http://doi.org/10.15199/48.2020.11.24
- Kuznetsov. V., Nikolenko, A. (2015). Models of operating asynchronous engines at poor-quality electricity. Eastern-European Journal of Enterprise Technologies, 1 (8 (73)), 37–42. doi: http://doi.org/10.15587/1729-4061.2015.36755
- Zagirnyak, M., Prus, V., Rodkin, D., Zachepa, I., Chenchevoi, V. (2019). A refined method for the calculation of steel losses at alternating current. Archives of Electrical Engineering, 68 (2), 295–308. doi: http://doi.org/10.24425/aee.2019.128269
- Lv, X., Sun, D., Sun, L. (2019). Determination of Iron Loss Coefficients of Ferromagnetic Materials Used in Cryogenic Motors. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). doi: http://doi.org/10.1109/icems.2019.8922160
- Liu, G., Liu, M., Zhang, Y., Wang, H., Gerada, C. (2020). High-Speed Permanent Magnet Synchronous Motor Iron Loss Calculation Method Considering Multiphysics Factors. IEEE Transactions on Industrial Electronics, 67 (7), 5360–5368. doi: http://doi.org/10.1109/tie.2019.2934075
- Iakimov, V. V. (1996). Problemy ucheta poter v stali pri raschete perekhodnykh protsessov v elektricheskikh mashinakh peremennogo toka. Tez. dokl. II Mezhdunarodnoi konferentsii po elektromekhanike i elektrotekhnologii, CHast 1. Krym, 172–174.
- Iakimov, V. V., Shestakov, A. V. (1997). Uchet poter v stali v sinkhronnykh mashinakh. Elektrotekhnika i energetika. Kirov, 2, 49−52.
- Nedelcu, S., Ritchie, E., Leban, K., Ghita, C., Trifu, I. (2013). Iron losses evaluation in soft magnetic materials with a sinusoidal voltage supply. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE). doi: http://doi.org/10.1109/atee.2013.6563461
- Ionel, D. M., Popescu, M., McGilp, M. I., Miller, T. J. E., Dellinger, S. J., Heideman, R. J. (2007). Computation of Core Losses in Electrical Machines Using Improved Models for Laminated Steel. IEEE Transactions on Industry Applications, 43 (6), 1554–1564. doi: http://doi.org/10.1109/tia.2007.908159
- Qiu, Y., Zhang, W., Cao, M., Feng, Y., Infield, D. (2015). An Electro-Thermal Analysis of a Variable-Speed Doubly-Fed Induction Generator in a Wind Turbine. Energies, 8 (5), 3386–3402. doi: http://doi.org/10.3390/en8053386
- Hodgins, N., Mueller, M. A., Tease, W. K., Staton, D. (2010). Thermal model of an induction generator in oscillating water column wave energy converter. 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). doi: http://doi.org/10.1049/cp.2010.0020
- Stephen Ejiofor, O., Justin, U., Damian Benneth, N., Uche, O. (2019). Development and thermal modeling of an induction machine. International Journal of Engineering & Technology, 8 (4), 500–508. doi: http://doi.org/10.14419/ijet.v8i4.29727
- Badran, O., Sarhan, H., Alomour, B. (2012). Thermal Performance Analysis of Induction Motor. International Journal of Heat and Technology, 30 (1), 75–88.
- Shreiner, R. T., Kostylev, A. V., Krivoviaz, V. K., Shilin, S. I. (2008). Elektromekhanicheskie i teplovye rezhimy asinkhronnykh dvigatelei v sistemakh chastotnogo regulirovaniia. Ekaterinburg: GOU VPO “RGPPU”, 361. Available at: https://www.elibrary.ru/item.asp?id=21333083
- Chenchevoi, V., Romashykhin, I., Romashykhina, Z. I., Al-Mashakbeh, A. S. (2017). Analysis of the special features of the thermal process in an induction generator at high saturation of the magnetic system. Electrical Engineering & Electromechanics, 3, 16–18. doi: http://doi.org/10.20998/2074-272x.2017.3.02
- Tryputen, N., Kuznetsov, V., Kuznetsova, Y. (2019). About the Possibility of Researching the Optimal Automatic Control System on a Physical Model of a Thermal Object. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 1244–1248. doi: http://doi.org/10.1109/ukrcon.2019.8879830
- Aarniovuori, L., Lindh, P., Karkkainen, H., Niemela, M., Pyrhonen, J., Cao, W. (2019). Analytical Evaluation of High-Efficiency Induction Motor Losses. 2019 IEEE International Electric Machines & Drives Conference (IEMDC). San Diego, 1501–1507. doi: http://doi.org/10.1109/iemdc.2019.8785380
- EN 50160-2010 (2010). Voltage characteristics of electricity supplied by public distribution networks. Available at: https://standards.iteh.ai/catalog/standards/clc/18a86a7c-e08e-405e-88cb-8a24e5fedde5/en-50160-2010#:~:text=CLC%2FTC%208X-,Voltage%20characteristics%20of%20electricity%20supplied%20by%20public%20electricity%20networks,networks%20under%20normal%20operating%20conditions
- GOST 13109–97 Elektricheskaia energiia. Sovmestimost tekhnicheskikh sredstv elektromagnitnaia. Normy kachestva elektricheskoi energii v sistemakh elektrosnabzheniia obschego naznacheniia (1999). Minsk: BelGISS, 31. Available at: http://odz.gov.ua/lean_pro/standardization/files/elektromagnitnaja_sovmestimost_2014_03_11_1.pdf
- GOST 30804.4.7-2013. Sovmestimost tekhnicheskikh sredstv elektromagnitnaia. Obschee rukovodstvo po sredstvam izmerenii i izmereniyam garmonik i intergarmonik dlia sistem elektrosnabzheniia i podkliuchaemykh k nim tekhnicheskikh sredstv (2013). Moscow: Standartinform. Available at: https://shop.znak.store/gost/oks-33/oks-33-100/oks-33-100-10/gost-30804472013-iec-61000472009-sovmestimost-tehnicheskih-sredstv-elektromagnitnaya-obshee-rukovodstvo-po-sredstvam-izmerenij-i-izmereniyam-garmonik-i-intergarmonik-dlya-sistem-elektrosnabzheniya-i-p
- Sistemy elektricheskoi izoliatsiyi. Otsenka nagrevostoikosti i klassifikatsiya: GOST 8865-93 (1993). Kyiv: Gosstandart Ukrainy, 14.
- Adler, Iu. P., Markova, E. V., Granovskii, Iu. V. (1976). Planirovanie eksperimenta pri poiske optimalnykh usloviy. Moscow: Nauka, 279.
- Borovikov, V. (2003). STATISTICA. Iskusstvo analiza dannykh na kompiutere: Dlia professionalov. Saint Petersburg: Piter, 688.
- Chenchevoi, V., Zachepa, I., Chornyi, O., Chencheva, O., Yatsiuk, R. (2020). Electric Power Quality Induction Generator with Parametric Asymmetry. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 504–508. doi: http://doi.org/10.1109/khpiweek51551.2020.9250097
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Volodymyr Chenchevoi, Valeriy Kuznetsov, Vitaliy Kuznetsov, Olga Chencheva, Iurii Zachepa, Oleksii Chornyi, Maksim Kovzel, Viktor Kovalenko, Mykola Babyak, Serhii Levchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.