Implementation of the method of figurative transformations to minimizing symmetric Boolean functions
DOI:
https://doi.org/10.15587/1729-4061.2021.239149Keywords:
minimization of symmetric Boolean functions by the method of figurative transformations, singular function, main basisAbstract
This paper reports a study that has established the possibility of improving the effectiveness of the method of figurative transformations in order to minimize symmetrical Boolean functions in the main and polynomial bases. Prospective reserves in the analytical method were identified, such as simplification of polynomial function conjuncterms using the created equivalent transformations based on the method of inserting the same conjuncterms followed by the operation of super-gluing the variables.
The method of figurative transformations was extended to the process of minimizing the symmetrical Boolean functions with the help of algebra in terms of rules for simplifying the functions of the main and polynomial bases and developed equivalent transformations of conjuncterms. It was established that the simplification of symmetric Boolean functions by the method of figurative transformations is based on a flowchart with repetition, which is the actual truth table of the assigned function. This is a sufficient resource to minimize symmetrical Boolean functions that makes it possible to do without auxiliary objects, such as Karnaugh maps, cubes, etc.
The perfect normal form of symmetrical functions can be represented by binary matrices that would represent the terms of symmetrical Boolean functions and the OR or XOR operation for them.
The experimental study has confirmed that the method of figurative transformations that employs the 2-(n, b)-design, and 2-(n, x/b)-design combinatorial systems improves the efficiency of minimizing symmetrical Boolean functions. Compared to analogs, this makes it possible to enhance the productivity of minimizing symmetrical Boolean functions by 100‒200 %.
There are grounds to assert the possibility of improving the effectiveness of minimizing symmetrical Boolean functions in the main and polynomial bases by the method of figurative transformations. This is ensured, in particular, by using the developed equivalent transformations of polynomial function conjuncterms based on the method of inserting similar conjuncterms followed by the operation of super-gluing the variables.
References
- Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits. Electrical Engineering, 57 (12), 713–723. doi: https://doi.org/10.1109/ee.1938.6431064
- Avgul', L. B., Petrochenko, A. S. (1989). Dekompozitsiya simmetricheskih bulevyh funktsiy i bulevyh funktsiy s chastichnoy simmetriey v bazise monotonnyh funktsiy. Kibernetika i sistemniy analiz, 3, 26–40.
- Sasao, T. (1993). FPGA Design by Generalized Functional Decomposition. Logic Synthesis and Optimization, 233–258. doi: https://doi.org/10.1007/978-1-4615-3154-8_11
- Svirshcheva, E. A. (1988). Strukturniy sintez neizomorfnyh sistem s odnorodnymi komponentami. Kharkiv, 256. Available at: http://www.techlibrary.ru/b1/2z1c1j1r2a1f1c1a_3l.2h._2z1t1r1u1l1t1u1r1o2c1k_1s1j1o1t1f1i_1o1f1j1i1p1n1p1r1v1o2c1w_1s1j1s1t1f1n_1s_1p1e1o1p1r1p1e1o2c1n1j_1l1p1n1q1p1o1f1o1t1a1n1j._1998.pdf
- Rytsar, B. Ye. (1996). Do formalizatsiyi symetrychnykh lohichnykh funktsiy n zminnykh. Materialy mizhnar. konf. “Suchasni problemy avtomatyzovanoi obrobky i vyrobnytstva radioelektronnykh zasobiv zastosuvannia zasobiv zviazku”. Ch. 2. Lviv-Slavsk, 28–30.
- Rytsar, B. Ye. (1999). Dekompozytsiya bulovykh funktsiy metodom q-rozbyttia. Upravlyayushchie sistemy i mashiny, 5, 29–42.
- Povarov, G. N. (1960). O gruppovoy invariantnosti bulevyh funktsiy. Primenenie logiki v nauke i tekhnike. Moscow: Izd-vo AN SSSR. Available at: https://www.twirpx.com/file/2906517/
- Mukhopadhyay, A. (1963). Detection of Total or Partial Symmetry of a Switching Function with the Use of Decomposition Charts. IEEE Transactions on Electronic Computers, EC-12 (5), 553–557. doi: https://doi.org/10.1109/pgec.1963.263654
- Das, S. R., Sheng, C. L. (1971). On Detecting Total or Partial Symmetry of Switching Functions. IEEE Transactions on Computers, C-20 (3), 352–355. doi: https://doi.org/10.1109/t-c.1971.223243
- Lupanov, O. B. (1965). Ob odnom podhode k sintezu upravlyayushchih sistem - printsipe lokal'nogo kodirovaniya. Problemy kibernetiki, 14, 31–110. Available at: http://new.math.msu.su/department/dm/dmmc/publ_4.htm
- Avgul', L. B. (1996). Polinomial'noe razlozhenie simmetricheskih bulevyh funktsiy tablichnym metodom. Kibernetika i sistemnyy analiz, 6, 59–71.
- Rytsar, B. E. (1997). Metod minimizatsii bulevyh funktsiy. Problemy upravleniya i informatiki,2, 100–113.
- Paulin, O. N., Lyahovetskiy, A. M. (2002). Model' i metod proektirovaniya mnogooperandnogo summatora na baze simmetricheskih funktsiy. Tr. mezhdunar. konf. po induktivnomu modelirovaniyu «MKIM – 2002». Lviv, 208–213.
- Paulin, O. N., Drozd, Yu. V. (1998). O sinteze logicheskih moduley, opisyvaemyh simmetricheskimi funktsiyami. Mat-ly mezhdunar. NTK «Priborostroenie». Evpatoriya, 189–192.
- Schnieber, M., Froehlich, S., Drechsler, R. Depth Optimized Synthesis of Symmetric Boolean Functions. Available at: http://www.informatik.uni-bremen.de/agra/doc/konf/2021_ISVLSI_SymmetricFunctions.pdf
- Burmistrov, S. V., Panasco, O. M., Kovalska, N. V. (2018). Matrix method of parallel decomposition for minimization of symmetric boolean functions in the form of extended polynomial. Bulletin of Cherkasy State Technological University, 1, 130–135. doi: https://doi.org/10.24025/2306-4412.1.2018.162604
- Papakonstantinou, G. (2014). A parallel algorithm for minimizing esop expressions. Journal of Circuits, Systems and Computers, 23 (01), 1450015. doi: https://doi.org/10.1142/s0218126614500157
- Brandão, L. T. A. N., Çalık, Ç., Sönmez Turan, M., Peralta, R. (2019). Upper bounds on the multiplicative complexity of symmetric Boolean functions. Cryptography and Communications, 11 (6), 1339–1362. doi: https://doi.org/10.1007/s12095-019-00377-3
- Zhang, J. S., Mishc, A., Brayton, R., Chrzanowska-Jeske, M. (2006). Symmetry detection for large Boolean functions using circuit representation, simulation, and satisfiability. 2006 43rd ACM/IEEE Design Automation Conference. doi: https://doi.org/10.1109/dac.2006.229269
- Drechsler, R., Becker, B. (1995). Sympathy: fast exact minimization of fixed polarity Reed-Muller expressions for symmetric functions. Proceedings the European Design and Test Conference. ED&TC 1995. doi: https://doi.org/10.1109/edtc.1995.470414
- Drechsler, R. (1997). Pseudo Kronecker expressions for symmetric functions. Proceedings Tenth International Conference on VLSI Design. doi: https://doi.org/10.1109/icvd.1997.568188
- Möller, D., Molitor, P., Drechsler, R. (1995). Symmetry Based Variable Ordering for ROBDDs. Logic and Architecture Synthesis, 70–81. doi: https://doi.org/10.1007/978-0-387-34920-6_7
- Arnold, R. F., Harrison, M. A. (1963). Algebraic Properties of Symmetric and Partially Symmetric Boolean Functions. IEEE Transactions on Electronic Computers, EC-12 (3), 244–251. doi: https://doi.org/10.1109/pgec.1963.263535
- Rytsar, B. Y. (2003). Identification of symmetry of boolean function decomposition cloning method. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. doi: https://doi.org/10.1109/telsks.2003.1246296
- Solomko, M. (2021). Developing an algorithm to minimize boolean functions for the visual-matrix form of the analytical method. Eastern-European Journal of Enterprise Technologies, 1 (4 (109)), 6–21. doi: https://doi.org/10.15587/1729-4061.2021.225325
- Solomko, M., Batyshkina, I., Khomiuk, N., Ivashchuk, Y., Shevtsova, N. (2021). Developing the minimization of a polynomial normal form of boolean functions by the method of figurative transformations. Eastern-European Journal of Enterprise Technologies, 2 (4 (110)), 22–37. doi: https://doi.org/10.15587/1729-4061.2021.229786
- Paulin, O. N., Yanko, V. G. (2014). O minimizatsii simmetricheskih bulevyh funktsiy. Konferentsiya «Modern Problems And Ways Of Their Solution In Science, Transport, Production And Education 2014». SWorld.
- Rytsar, B. Ye. (2013). A Numeric Set-Theoretical Interpretation of Polynomial Zhegalkin. Upravlinnia systemamy i mashynamy, 1, 11–26. Available at: http://dspace.nbuv.gov.ua/handle/123456789/83125
- Rytsar, B. Ye. (2015). New minimization method of logical functions in polynomial set-theoretical format. 1. Generalized rules of conjuncterms simplification. Upravlyayushchie sistemy i mashiny, 2, 39–57. Available at: http://dspace.nbuv.gov.ua/handle/123456789/87194
- Yablonskiy, S. V. (1986). Vvedenie v diskretnuyu matematiku. Moscow: Nauka, 384. Available at: https://stugum.files.wordpress.com/2014/03/yablonskiy-vvedenie-v-diskretnuyu-matematiku.pdf
- Rytsar, B. Y. (2019). A New Method for Symmetry Recognition in Boolean Functions Based on the Set-Theoretical Logic Differentiation. I. Control Systems and Computers, 4 (282), 3–13. doi: https://doi.org/10.15407/csc.2019.04.003
- Tran, A. (1987). Graphical method for the conversion of minterms to Reed-Muller coefficients and the minimisation of exclusive-OR switching functions. IEE Proceedings E Computers and Digital Techniques, 134 (2), 93. doi: https://doi.org/10.1049/ip-e.1987.0016
- Zakrevskiy, A. D. (1981). Logicheskiy sintez kaskadnyh skhem. Moscow, 416. Available at: https://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=272497
- Barkalov, A. A., Krasichkov, A. A. (2002). Metody dekompozitsii bulevyh funktsiy. Naukovi pratsi DonNTU, 39, 116–121.
- Rytsar, B. E. (2009). A new approach to the decomposition of boolean functions. 4. Non-disjoint decomposition: p,q-partition. Kibernetika i sistemniy analiz, 3, 15–41. Available at: http://dspace.nbuv.gov.ua/handle/123456789/44365
- Rytsar, B. Ye. (2013). Minimization of logic functions system by konjuncterms parallel splitting method. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Radioelektronika ta telekomunikatsiyi, 766, 18–27. Available at: http://nbuv.gov.ua/UJRN/VNULPPT_2013_766_6
- Viter, V. V., Gur'yanov, A. V., Kozyuminskiy, V. D., Mishchenko, V. A., Tereshko, S. M. (1984). Pat. No. 1228099 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 3696344; declareted: 30.01.1984; published: 30.04.1986. Available at: http://patents.su/3-1228099-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Avgul', L. B., Dubovik, Yu. I., Suprun, V. P., Yakush, V. P. (1986). Pat. No. 1374216 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4098636; declareted: 30.07.1986; published: 15.02.1988. Available at: https://patents.su/3-1374216-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Avgul', L. B., Suprun, V. P. (1987). Pat. No. 1429108 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4195013; declareted: 17.02.1987; published: 07.10.1988. Available at: http://patents.su/3-1429108-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Anisimova, L. O., Zemtsova, N. K., Mutihina, O. I., Hlystov, A. V., Chizhuhin, G. N. (1987). Pat. No. 1524045 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4238062; declareted: 04.05.1987; published: 23.11.1989. Available at: https://patents.su/2-1524045-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Avgul', L. B., Suprun, V. P. (1987). Pat. No. 1479928 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4306252; declareted: 14.09.1987; published: 15.05.1989. Available at: https://patents.su/2-1479928-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Avgul', L. B., Suprun, V. P. (1988). Pat. No. 1575172 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4404427; declareted: 05.04.1988; published: 30.06.1990. Available at: https://patents.su/2-1575172-chetyrekhvkhodovyjj-odnorazryadnyjj-summator.html
- Avgul', L. B., Suprun, V. P. (1988). Pat. No. 1658145 SSSR. Chetyrekhvhodoviy odnorazryadniy summator. No. 4476179; declareted: 26.08.1988; published: 23.06.1991. Available at: https://findpatent.ru/patent/165/1658145.html
- Chizhuhin, G. N. (1989). Pat. No. 1683007 SSSR. Chetyrekhvhodoviy odnorazryadnyy summator. No. 4746424; declareted: 02.10.1989; published: 07.10.1991. Available at: https://patents.su/2-1683007-chetyrekhvkhodovojj-odnorazryadnyjj-summator.html
- Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimization by combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. doi: https://doi.org/10.15587/2312-8372.2017.118336
- Riznyk, V., Solomko, M. (2018). Research of 5-bit boolean functions minimization protocols by combinatorial method. Technology Audit and Production Reserves, 4 (2(42)), 41–52. doi: https://doi.org/10.15587/2312-8372.2018.140351
- Riznyk, V., Solomko, M., Tadeyev, P., Nazaruk, V., Zubyk, L., Voloshyn, V. (2020). The algorithm for minimizing Boolean functions using a method of the optimal combination of the sequence of figurative transformations. Eastern-European Journal of Enterprise Technologies, 3 (4 (105)), 43–60. doi: https://doi.org/10.15587/1729-4061.2020.206308
- Solomko, M., Khomiuk, N., Ivashchuk, Y., Nazaruk, V., Reinska, V., Zubyk, L., Popova, A. (2020). Implementation of the method of image transformations for minimizing the Sheffer functions. Eastern-European Journal of Enterprise Technologies, 5 (4 (107)), 19–34. doi: https://doi.org/10.15587/1729-4061.2020.214899
- Riznyk, V., Solomko, M. (2017). Minimization of Boolean functions by combinatorial method. Technology Audit and Production Reserves, 4 (2 (36)), 49–64. doi: https://doi.org/10.15587/2312-8372.2017.108532
- Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Technology Audit and Production Reserves, 5 (2 (43)), 42–55. doi: https://doi.org/10.15587/2312-8372.2018.146312
- Lobanov, V. I. (2002). Russkaya logika protiv klassicheskoy (azbuka matematicheskoy logiki). Moscow: Sputnik+, 113. Available at: https://rusneb.ru/catalog/000199_000009_002095987/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mykhailo Solomko, Petro Tadeyev, Liudmyla Zubyk, Stepaniia Babych, Yuliia Mala, Oksana Voitovych
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.