Devising a new filtration method and proof of self-similarity of electromyograms
DOI:
https://doi.org/10.15587/1729-4061.2021.239165Keywords:
electromyograms, Poincaré plot, scaling law, fractal dimensionality, variability, Haar waveletsAbstract
The main attention is paid to the analysis of electromyogram (EMG) signals using Poincaré plots (PP). It was established that the shapes of the plots are related to the diagnoses of patients. To study the fractal dimensionality of the PP, the method of counting the coverage figures was used. The PP filtration was carried out with the help of Haar wavelets. The self-similarity of Poincaré plots for the studied electromyograms was established, and the law of scaling was used in a fairly wide range of coverage figures. Thus, the entire Poincaré plot is statistically similar to its own parts. The fractal dimensionalities of the PP of the studied electromyograms belong to the range from 1.36 to 1.48. This, as well as the values of indicators of Hurst exponent of Poincaré plots for electromyograms that exceed the critical value of 0.5, indicate the relative stability of sequences.
The algorithm of the filtration method proposed in this research involves only two simple stages:
- Conversion of the input data matrix for the PP using the Jacobi rotation.
- Decimation of both columns of the resulting matrix (the so-called "lazy wavelet-transformation", or double downsampling).
The algorithm is simple to program and requires less machine time than existing filters for the PP.
Filtered Poincaré plots have several advantages over unfiltered ones. They do not contain extra points, allow direct visualization of short-term and long-term variability of a signal. In addition, filtered PPs retain both the shape of their prototypes and their fractal dimensionality and variability descriptors. The detected features of electromyograms of healthy patients with characteristic low-frequency signal fluctuations can be used to make clinical decisions.
References
- Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G. et. al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101 (23), e215–e220. doi: http://doi.org/10.1161/01.cir.101.23.e215
- Reaz, M. B. I., Hussain, M. S., Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online, 8 (1), 11–35. doi: http://doi.org/10.1251/bpo115
- Chuiko, G. P., Shyian, I. A. (2015). Processing and analysis of electroneuromyograms with Maple tools. Biomedical Engineering and Electronics, 10. Available at: http://biofbe.esrae.ru/pdf/2015/3/1006.pdf Last accessed: 06.02.2020
- Kantz, H., Schreiber, T. (2010). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press. doi: http://doi.org/10.1017/cbo9780511755798
- Burykin, A., Costa, M. D., Citi, L., Goldberger, A. L. (2014). Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems. BMC Medical Informatics and Decision Making, 14 (1). doi: http://doi.org/10.1186/1472-6947-14-6
- Karmakar, C. K., Khandoker, A. H., Gubbi, J., Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8 (1). doi: http://doi.org/10.1186/1475-925x-8-17
- Golińska, A. K. (2013). Poincaré Plots in Analysis of Selected Biomedical Signals. Studies in Logic, Grammar and Rhetoric, 35 (1), 117–127. doi: http://doi.org/10.2478/slgr-2013-0031
- Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271 (1), H244–H252. doi: http://doi.org/10.1152/ajpheart.1996.271.1.h244
- Piskorski, J., Guzik, P. (2005). Filtering Poincaré plots. Computational Methods in Science and Technology, 11 (1), 39–48. doi: http://doi.org/10.12921/cmst.2005.11.01.39-48
- Hansen, P. C., Jensen, S. H. (1998). FIR filter representations of reduced-rank noise reduction. IEEE Transactions on Signal Processing, 46 (6), 1737–1741. doi: http://doi.org/10.1109/78.678511
- Figueiredo, N., Georgieva, P., Lang, E. W., Santos, I. M., Teixeira, A. R., Tomé, A. M. (2010). SSA of biomedical signals: A linear invariant systems approach. Statistics and Its Interface, 3 (3), 345–355. doi: http://doi.org/10.4310/sii.2010.v3.n3.a8
- Harris, T. J., Yuan, H. (2010). Filtering and frequency interpretations of Singular Spectrum Analysis. Physica D: Nonlinear Phenomena, 239 (20-22), 1958–1967. doi: http://doi.org/10.1016/j.physd.2010.07.005
- Review of New Features in Maple 18. Available at: https://www.wolfram.com/mathematica/compare-mathematica/files/ReviewOfMaple18.pdf Last accessed: 06.02.2020
- Chuiko, G. P., Shyian, I. O., Galyak, D. A. (2015). Interface elements of scientific web-resource physionet and import data to computer mathematics system Maple 17. Medical Informatics and Engineering, (3), 84–88. doi: http://doi.org/10.11603/mie.1996-1960.2015.3.5008
- Gorban, A. N., Zinovyev, A. Y. (2008). Principal Graphs and Manifolds. Handbook of Research on Machine Learning Applications and Trends, 28–59. doi: http://doi.org/10.4018/978-1-60566-766-9.ch002
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1256.
- Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69 (3), 331–371. doi: http://doi.org/10.1007/bf01456326
- Dastourian, B., Dastourian, E., Dastourian, S., Mahnaie, O. (2014). Discrete Wavelet Transforms Of Haar’s Wavelet. International Journal of Scientific & Technology Research, 3 (9), 247–251. Available at: http://www.ijstr.org/final-print/sep2014/Discrete-Wavelet-Transforms-Of-Haars-Wavelet-.pdf Last accessed: 06.02.2020
- Mandelbrot, B. (1967). How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156 (3775), 636–638. doi: http://doi.org/10.1126/science.156.3775.636
- Bourke, P. (2014). Box counting fractal dimension of volumetric data. Available at: http://paulbourke.net/fractals/cubecount/ Last accessed: 06.02.2020
- Gneiting, T., Schlather, M. (2004). Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Review, 46 (2), 269–282. doi: http://doi.org/10.1137/s0036144501394387
- Mäkikallio, T. (1998). Analysis of heart rate dynamics by methods derived from nonlinear mathematics. Clinical applicability and prognostic significance. Oulu: University of Oulu. Available at: http://jultika.oulu.fi/files/isbn9514250133.pdf Last accessed: 06.02.2020
- Huikuri, H. V., Mäkikallio, T. H., Peng, C.-K., Goldberger, A. L., Hintze, U., Møller, M. (2000). Fractal Correlation Properties of R-R Interval Dynamics and Mortality in Patients With Depressed Left Ventricular Function After an Acute Myocardial Infarction. Circulation, 101 (1), 47–53. doi: http://doi.org/10.1161/01.cir.101.1.47
- Voss, A., Schulz, S., Schroeder, R., Baumert, M., Caminal, P. (2008). Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1887), 277–296. doi: http://doi.org/10.1098/rsta.2008.0232
- Carvalho, T. D., Pastre, C. M., Moacir Fernandes de Godoy, Pitta, F. O., de Abreu, L. C., Ercy Mara Cipulo Ramos et. al. (2011). Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 6, 23–28. doi: http://doi.org/10.2147/copd.s15099
- Gomes, R. L., Vanderlei, L. C. M., Garner, D. M., Vanderlei, F. M., Valenti, V. E. (2017). Higuchi Fractal Analysis of Heart Rate Variability is Sensitive during Recovery from Exercise in Physically Active Men. Medical Express, 4 (2). doi: http://doi.org/10.5935/medicalexpress.2017.02.03
- Antônio, A. M. S., Cardoso, M. A., Carlos de Abreu, L., Raimundo, R. D., Fontes, A. M. G. G., Garcia da Silva A. et. al. (2014). Fractal Dynamics of Heart Rate Variability: A Study in Healthy Subjects. Journal of Cardiovascular Development and Disease, 2 (3), 2330–460.
- Chuiko, G. P., Dvornik, O. V., Darnapuk, Y. S. (2018). Shape Evolutions of Poincaré Plots for Electromyograms in Data Acquisition Dynamics. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), 119–122. doi: http://doi.org/10.1109/dsmp.2018.8478516
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gennady Chuiko, Olga Dvornik, Yevhen Darnapuk, Yevgen Baganov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.