Development of sedimentation resistant water-acrylic titanium dioxide dispersions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239208

Keywords:

water-acrylic compositions, adsorption, titanium dioxide, sodium polyacrylate, polyether siloxane copolymer

Abstract

According to the results of the research, the effect of stabilization of dispersions of titanium dioxide in water-acrylic compositions was established. It was proved that in aqueous-acrylic suspensions at all variations of film-forming agent (from 0 to 5 g/dm3), the maximum of stabilizing activity of the surfactants under study is achieved at CSAS=0.25 g/dm3. The minimum deposition rate of titanium dioxide dispersions at a dosing of 0.25 g/dm3 of sodium polyacrylate was at the level of 0.097 10-3 g/s at any content of film-forming agent (Cff=0.5÷5 g/dm3) in suspensions. At the introduction of the same concentration (CSAS=0.25 g/dm3) of the polyether siloxane copolymer, a decrease in sedimentation rate to 0.053 10-3 g/s in suspensions with a limited acryl content (C≤1 g/dm3) was recorded. At an increase in the concentration of a film-forming agent (C>1 g/dm3) in suspensions, sedimentation stability decreased, which is proved by an increase in the sedimentation rate of TiO2 to 0.110∙10-3 g/s at Cff=5.0 g/dm3. It was found that in aqueous-acrylic suspensions with the film-forming content from 0.5 to 1 g/dm3, the minimum average diameter was 2.64÷3.1 μm CSAS=0.25 g/dm3. Further concentration of acryl (Cff=4÷5 g/dm3) at the same dosage of polyether siloxane copolymer was accompanied by an increase in the average particle size up to 4.30÷4.61 μm. The maximum of wedging activity of sodium polyacrylate (CSAS=0.25 g/dm3) corresponds to the same minimum of the average diameter (2–3 μm).

Supporting Agency

  • This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856284).

Author Biographies

Antonina Dyuryagina, Manash Kozybayev North Kazakhstan University

PhD, Associate Professor, Head of Department

Department of Chemistry and Chemical Technologies

Aida Lutsenko, Manash Kozybayev North Kazakhstan University

Master of Engineering

Department of Chemistry and Chemical Technologies

References

  1. Kozlova, A. A., Kondrashov, E. K., Deev, I. S., Schegoleva, N. E. (2013). Issledovanie vliyaniya fraktsionnogo sostava i udel'noy poverhnosti antikorrozionnyh pigmentov na zaschitnye svoystva epoksidnyh pokrytiy. Korroziya: materialy, zaschita, 3, 42–44.
  2. Ur'ev, N. B. (2019). Dinamicheskaya agregativnaya ustoychivost' i sverhvysokaya tekuchest' vysokokontsentrirovannyh nanodispersnyh sistem. Kolloidniy zhurnal, 81 (5), 642–649. doi: https://doi.org/10.1134/s0023291219050197
  3. Uriev, N. B. (2004). Physicochemical dynamics of disperse systems. Russian Chemical Reviews, 73 (1), 37–58. doi: https://doi.org/10.1070/rc2004v073n01abeh000861
  4. Van Kao, S., Nielsen, L. E., Hill, C. T. (1975). Rheology of concentrated suspensions of spheres. I. Effect of the liquid – solid interface. Journal of Colloid and Interface Science, 53 (3), 358–366. doi: https://doi.org/10.1016/0021-9797(75)90051-x
  5. Yaminskiy, V. V., Pchelin, V. A., Amelina, E. A., Schukin, E. D. (1982). Koagulyatsionnye kontakty v dispersnyh sistemah. Moscow: Himiya, 185.
  6. Schukin, E. D., Pertsov, A. V., Amelina, E. A. (2006). Kolloidnaya himiya. Moscow: Vysshaya shkola, 444.
  7. Wu, F., Misra, M., Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 117, 101395. doi: https://doi.org/10.1016/j.progpolymsci.2021.101395
  8. Ziman, J. M. (1979). Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems. Cambridge University Press, 540.
  9. Jullien, R., Botet, R. (1987). Aggregation and Fractal Aggregates. Singapore: World Scientific, 120.
  10. Löf, D., Hamieau, G., Zalich, M., Ducher, P., Kynde, S., Midtgaard, S. R. et. al. (2020). Dispersion state of TiO2 pigment particles studied by ultra-small-angle X-ray scattering revealing dependence on dispersant but limited change during drying of paint coating. Progress in Organic Coatings, 142, 105590. doi: https://doi.org/10.1016/j.porgcoat.2020.105590
  11. Tager, A. A. (2007). Fizikohimiya polimerov. Moscow: Himiya, 536.
  12. Yoshida, J., Tateyama, K., Kasahara, Y., Yuge, H. (2020). Stabilization of oxidized ruthenium complexes by adsorption on clay minerals. Applied Clay Science, 199, 105869. doi: https://doi.org/10.1016/j.clay.2020.105869
  13. Das, S., Kashyap, N., Kalita, S., Bora, D. B., Borah, R. (2020). A brief insight into the physicochemical properties of room-temperature acidic ionic liquids and their catalytic applications in C C bond formation reactions. Advances in Physical Organic Chemistry, 1–98. doi: https://doi.org/10.1016/bs.apoc.2020.07.002
  14. Fernandez, A. M., Held, U., Willing, A., Breuer, W. H. (2005). New green surfactants for emulsion polymerization. Progress in Organic Coatings, 53 (4), 246–255. doi: https://doi.org/10.1016/j.porgcoat.2004.12.011
  15. Fernández-Merino, M. J., Paredes, J. I., Villar-Rodil, S., Guardia, L., Solís-Fernández, P., Salinas-Torres, D. et. al. (2012). Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon, 50 (9), 3184–3194. doi: https://doi.org/10.1016/j.carbon.2011.10.039
  16. Thompson, S. A., Williams, R. O. (2021). Specific mechanical energy – An essential parameter in the processing of amorphous solid dispersions. Advanced Drug Delivery Reviews, 173, 374–393. doi: https://doi.org/10.1016/j.addr.2021.03.006
  17. Fardi, T., Pintus, V., Kampasakali, E., Pavlidou, E., Papaspyropoulos, K. G., Schreiner, M., Kyriacou, G. (2018). A novel methodological approach for the assessment of surface cleaning of acrylic emulsion paints. Microchemical Journal, 141, 25–39. doi: https://doi.org/10.1016/j.microc.2018.04.033
  18. Dyuryagina, A. N., Lugovitskaya, T. N., Ostrovnoy, K. A. (2007). Avtomatizatsiya analiza poroshkov i suspenziy na osnove komp'yuterno-opticheskih sistem. Sbornik trudov tret'ey mezhdunarodnoy nauchno-prakticheskoy konferentsii «Issledovanie, razrabotka i primenenie vysokih tekhnologiy v promyshlennosti». Vol. 9. Sankt-Peterburg, 47–48.
  19. Dyuryagina, A. N., Ostrovnoy, K. A. (2007). Otsenka dezagregiruyuschego effekta PAV v lakokrasochnyh kompozitsiyah putem sopryazheniya opticheskoy mikroskopii i personal'nyh EVM. Lakokrasochnye materialy i ih primenenie, 7-8, 77–80.
  20. Lunkenheimer, K., Wantke, K. D. (1978). On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solutions. Journal of Colloid and Interface Science, 66 (3), 579–581. doi: https://doi.org/10.1016/0021-9797(78)90079-6
  21. De la Rosa, Á., Poveda, E., Ruiz, G., Moreno, R., Cifuentes, H., Garijo, L. (2020). Determination of the plastic viscosity of superplasticized cement pastes through capillary viscometers. Construction and Building Materials, 260, 119715. doi: https://doi.org/10.1016/j.conbuildmat.2020.119715
  22. Karlsson, P., Palmqvist, A. E. C., Holmberg, K. (2006). Surface modification for aluminium pigment inhibition. Advances in Colloid and Interface Science, 128-130, 121–134. doi: https://doi.org/10.1016/j.cis.2006.11.010
  23. Yang, Y.-J., Kelkar, A. V., Zhu, X., Bai, G., Ng, H. T., Corti, D. S., Franses, E. I. (2015). Effect of sodium dodecylsulfate monomers and micelles on the stability of aqueous dispersions of titanium dioxide pigment nanoparticles against agglomeration and sedimentation. Journal of Colloid and Interface Science, 450, 434–445. doi: https://doi.org/10.1016/j.jcis.2015.02.051
  24. Nsib, F., Ayed, N., Chevalier, Y. (2007). Comparative study of the dispersion of three oxide pigments with sodium polymethacrylate dispersants in alkaline medium. Progress in Organic Coatings, 60 (4), 267–280. doi: https://doi.org/10.1016/j.porgcoat.2007.07.021

Downloads

Published

2021-08-31

How to Cite

Dyuryagina, A., & Lutsenko, A. (2021). Development of sedimentation resistant water-acrylic titanium dioxide dispersions. Eastern-European Journal of Enterprise Technologies, 4(6(112), 51–59. https://doi.org/10.15587/1729-4061.2021.239208

Issue

Section

Technology organic and inorganic substances