Devising a self-adjusting zero-order Brown’s model for predicting irreversible processes and phenomena

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.241474

Keywords:

fire forecasting, self-adjusting Brown’s model, ignition, air environment, current measure of recurrence

Abstract

A self-adjusting zero-order Brown’s model has been devised. This model makes it possible to predict with high accuracy not only fires in the premises but also irreversible processes and phenomena of a random and chaotic nature under actual conditions. The essence of the self-adjusting model is that, based on Kalman’s approach, it is proposed to set the smoothing parameter for each time moment. Such a parameter is determined depending on the resulting current forecast error, taking into consideration the real and unknown dynamics of the studied series and noise. That does not require the selection of the smoothing parameter characteristic of known models. In addition, the proposed Brown’s model, unlike the known modifications, does not require setting a dynamics model of the level of the examined time series. The self-adjusting model provides negligible errors and efficiency of the forecast. The operability of the devised model was checked using an example of the experimental time series for the current measure of the recurrence of the increments of the state of the air medium in the laboratory chamber during alcohol combustion. As quantitative indicators of the quality of the forecast error, the current values for the square and absolute values were considered. It has been established that the current square of the forecast error is more than six orders of magnitude smaller compared to the case of a fixed smoothing parameter from a beyond-the-limit set. However, the current square of the forecast error for abrupt changes in the dynamics of the series level is half that of the fixed parameter of the beyond-the-limit set. It is noted that the results confirm the feasibility of the proposed self-adjusting Brown’s model

Author Biographies

Boris Pospelov, Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Vladimir Andronov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Research Center

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Senior Researcher

Research Center

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Associate Professor

Department of Environmental Safety and Environmental Education

Nadiya Maksymenko, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Environmental Monitoring and Management

Igor Biryukov, National Academy of the National Guard of Ukraine

Doctor of Technical Sciences, Associate Professor

Department of Missile and Artillery Weapons

Maxim Zhuravskij, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Organization of Educational Activities of the Educational and Methodical Center

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Ihor Morozov, National Academy of the National Guard of Ukraine

PhD, Senior Researcher

Department of Research and Organization

Ihor Yevtushenko, Yaroslav Mudryi National Law University

PhD

Department of Tactics-special, Fire and Special Physical Trainingjuridical Personnel Training

References

  1. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
  2. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
  3. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: https://doi.org/10.6001/energetika.v64i4.3893
  4. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  5. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
  6. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  7. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
  8. Lukashin, Yu. P. (2003). Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov. Moscow: Finansy i statistika, 416.
  9. Brown, R. G. (2004). Smoothing, forecasting and prediction of discrete time series. Dover Publications, 480.
  10. Svetun'kov, S. G., Butuhanov, A. V., Svetun'kov, I. S. (2006). Zapredel'nye sluchai metoda Brauna v ekonomicheskom prognozirovanii. Sankt-Peterburg: SPbGUEF, 71.
  11. Hyndman, R. J., Khandakar, Y. (2008). Automatic time series forecasting: the forecast Package for R. Journal of statistical software, 27 (3), 1–22. doi: https://doi.org/10.18637/jss.v027.i03
  12. Gambarov, G. M., Zhuravel', N. M., Korolev, Yu. G. (1990). Statisticheskoe modelirovanie i prognozirovanie. Moscow: Finansy i statistika, 383.
  13. Chetyrkin, E. M. (1977). Statisticheskie metody prognozirovaniya. Moscow: Statistika, 200.
  14. Lugachev, M. I., Lyapuntsov, Yu. P. (1999). Metody sotsial'no-ekonomicheskogo prognozirovaniya. Moscow: TEIS, 160.
  15. Svetun'kov, S. G. (2002). O rasshirenii granits primeneniya metoda Brauna. Izvestiya Sankt-Peterburgskogo gosudarstvennogo universiteta ekonomiki i finansov, 3, 94–107.
  16. Vartanyan, V. M., Romanenkov, Yu. A., Kononenko, A. V. (2005). Parametricheskiy sintez prognoznoy modeli eksponentsial'nogo sglazhivaniya. Vestnik NTU «KhPI», 59, 9–16.
  17. Tebueva, F., Streblianskaia, N. (2016). Adaptive method for predicting short time series of natural processes. Sovremennaya nauka: aktual'nye problemy teorii i praktiki, 6, 83–87.
  18. Svetun'kov, I. S. Samoobuchayuschayasya model' kratkosrochnogo prognozirovaniya sotsial'no-ekonomicheskoy dinamiki. Available at: https://www.hse.ru/data/2011/02/28/1211522815/2010_mk_article.pdf
  19. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et. al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  20. Koshmarov, Yu. A., Puzach, S. V., Andreev, V. V. (2012). Prognozirovanie opasnyh faktorov pozhara v pomeschenii. Moscow: AGPS MChS Rossii, 126.
  21. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  22. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
  23. Ahn, C.-S., Kim, J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117, 185–196. doi: https://doi.org/10.2495/safe110171
  24. Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  25. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  26. Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: https://doi.org/10.1007/s10694-011-0230-0
  27. Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
  28. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  29. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  30. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  31. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  32. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
  33. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: https://doi.org/10.1002/9781118032428
  34. Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL, 1–8. Available at: https://hal.archives-ouvertes.fr/hal-01303330/document
  35. Pretrel, H., Querre, P., Forestier, M. (2005). Experimental Study Of Burning Rate Behaviour In Confined And Ventilated Fire Compartments. Fire Safety Science, 8, 1217–1228. doi: https://doi.org/10.3801/iafss.fss.8-1217
  36. Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, 655.
  37. Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
  38. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  39. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  40. Sinaga, H., Irawati, N. (2020). A Medical Disposable Supply Demand Forecasting By Moving Average And Exponential Smoothing Method. Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia. doi: https://doi.org/10.4108/eai.24-1-2018.2292378
  41. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  42. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  43. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  44. Bestuzhev-Lada, I. V. (1982). Rabochaya kniga po prognozirovaniyu. Moscow: Mysl', 430.
  45. Seydzh, E. P., Uayt, Ch. S. (1982). Optimal'noe upravlenie sistemami. Moscow: Radio i svyaz', 392.

Downloads

Published

2021-10-31

How to Cite

Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Biryukov, I., Zhuravskij, M., Bezuhla, Y., Morozov, I., & Yevtushenko, I. (2021). Devising a self-adjusting zero-order Brown’s model for predicting irreversible processes and phenomena. Eastern-European Journal of Enterprise Technologies, 5(10 (113), 40–47. https://doi.org/10.15587/1729-4061.2021.241474