Development of a method for assessing the security of cyber-physical systems based on the Lotka–Volterra model
DOI:
https://doi.org/10.15587/1729-4061.2021.241638Keywords:
critical infrastructure, security system, threat classifier, Lotka–Volterra model, simulation method, security levelAbstract
The paper presents the results of the development of a method for assessing the security of cyber-physical systems based on the Lotka–Volterra model. Security models of cyber-physical systems are proposed: “predator–prey” taking into account the computing capabilities and focus of targeted cyberattacks, “predator–prey” taking into account the possible competition of attackers in relation to the “prey”, “predator–prey” taking into account the relationships between “prey species” and “predator species”, “predator–prey” taking into account the relationship between “prey species” and “predator species”. Based on the proposed approach, the coefficients of the Lotka–Volterra model α=0.39, β=0.32, γ=0.29, φ=0.27 were obtained, which take into account the synergy and hybridity of modern threats, funding for the formation and improvement of the protection system, and also allow determining the financial and computing capabilities of the attacker based on the identified threats.
The proposed method for assessing the security of cyber-physical systems is based on the developed threat classifier, allows assessing the current security level and provides recommendations regarding the allocation of limited protection resources based on an expert assessment of known threats. This approach allows offline dynamic simulation, which makes it possible to timely determine attackers' capabilities and form preventive protection measures based on threat analysis. In the simulation, actual bases for assessing real threats and incidents in cyber-physical systems can be used, which allows an expert assessment of their impact on both individual security services and security components (cyber security, information security and security of information).
The presented simulation results do not contradict the graphical results of the classical Lotka–Volterra model, which indicates the adequacy of the proposed approach for assessing the security of cyber-physical systems
References
- IoT Security Maturity Model: Description and Intended Use (2018). Available at: https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_2018-04-09.pdf
- IoT Security Maturity Model: Practitioner’s Guide (2019). Available at: https://iiconsortium.org/pdf/IoT_SMM_Practitioner_Guide_2019-02-25.pdf
- Global'noe issledovanie tendentsiy informatsionnoy bezopasnosti na 2017. Available at: https://www.pwc.ru/ru/publications/gsiss-2017.html
- Otchet Antifishinga o zaschischennosti sotrudnikov v 2020 godu (2021). Available at: https://antiphish.ru/tpost/88km7s0a01-otchyot-antifishinga-o-zaschischennosti
- Gartner nazvala 10 glavnyh trendov v sfere kiberbezopasnosti v 2021 godu. Available at: https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D0%B5_%D1%82%D0%B5%D0%BD%D0%B4%D0%B5%D0%BD%D1%86%D0%B8%D0%B8_%D0%B2_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D0%B5_%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8#.2AGartner_.D0.BD.D0.B0.D0.B7.D0.B2.D0.B0.D0.BB.D0.B0_10_.D0.B3.D0.BB.D0.B0.D0.B2.D0.BD.D1.8B.D1.85_.D1.82.D1.80.D0.B5.D0.BD.D0.B4.D0.BE.D0.B2_.D0.B2_.D1.81.D1.84.D0.B5.D1.80.D0.B5_.D0.BA.D0.B8.D0.B1.D0.B5.D1.80.D0.B1.D0.B5.D0.B7.D0.BE.D0.BF.D0.B0.D1.81.D0.BD.D0.BE.D1.81.D1.82.D0.B8_.D0.B2_2021_.D0.B3.D0.BE.D0.B4.D1.83
- Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) (2021). Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 188. doi: https://doi.org/10.15587/978-617-7319-31-2
- Hryshchuk, R., Yevseiev, S. (2016). The synergetic approach for providing bank information security: the problem formulation. Ukrainian Scientific Journal of Information Security, 22 (1), 64–74. doi: https://doi.org/10.18372/2225-5036.22.10456
- Hryshchuk, R. V. (2010). Teoretychni osnovy modeliuvannia protsesiv napadu na informatsiu metodamy teoriy dyferentsialnykh ihor ta dyferentsialnykh peretvoren. Zhytomyr: Ruta, 280.
- Hryshchuk, R. V., Danyk, Yu. H.; Danyk, Yu. H. (Ed.) (2016). Osnovy kibernetychnoi bezpeky. Zhytomyr: ZhNAEU, 636.
- Petrov, O., Lahno, V. (2016). Povyshenie informatsionnoy bezopasnosti avtomatizirovannyh sitsem obrabotki dannyh na transporte. Information Technology in Selected Areas of Management. Krakow, 65–78.
- Model' zrelosti bezopasnosti interneta veschey: tolchok k razvitiyu bezopasnyh sistem. Available at: https://ics-cert.kaspersky.ru/reports/2019/08/14/the-internet-of-things-security-maturity-model-a-nudge-for-iot-cybersecurity/
- Trubetskov, D. I. (2011). Phenomenon of Lotka–Volterra mathematical model and similar models. Izvestiya VUZ. Applied Nonlinear Dynamics, 19 (2), 69–88. doi: https://doi.org/10.18500/0869-6632-2011-19-2-69-88
- Bratus', A. S., Novozhilov, A. S., Platonov, A. P. Dinamicheskie sistemy i modeli biologii. Available at: https://avmaksimov.ucoz.ru/_ld/1/109_-Bratus_A-Novoz.pdf
- Dormidontov, A. V., Mironova, L. V., Mironov, V. S. (2018). Possibility of the mathematical model of counteraction application to the assessment of transport infrastructure security level. Civil Aviation High Technologies, 21 (3), 67–77. doi: https://doi.org/10.26467/2079-0619-2018-21-3-67-77
- Kononovich, I. V. (2014). Dynamics of the number of information security incidents. Informatics and Mathematical Methods in Simulation, 4 (1), 35–43. Available at: http://immm.opu.ua/files/archive/n1_v4_2014/n1_v4_2014.pdf
- Kononovich, І., Mayevskiy, D., Podobniy, R. (2015). Models of system of the cibersecurity providing with delay of reaction on incidents. Informatics and Mathematical Methods in Simulation, 5 (4), 339–346. Available at: http://immm.opu.ua/files/archive/n4_v5_2015/n4_v5_2015.pdf
- Lippert, K. J., Cloutier, R. (2021). Cyberspace: A Digital Ecosystem. Systems, 9 (3), 48. doi: https://doi.org/10.3390/systems9030048
- Mazurczyk, W., Drobniak, S., Moore, S. (2016). Towards a Systematic View on Cybersecurity Ecology. Combatting Cybercrime and Cyberterrorism, 17–37. doi: https://doi.org/10.1007/978-3-319-38930-1_2
- Gorman, S. P., Kulkarni, R. G., Schintler, L. A., Stough, R. R. A Predator Prey Approach to the Network Structure of Cyberspace. Available at: https://www.researchgate.net/publication/255679706_A_predator_prey_approach_to_the_network_structure_of_cyberspace
- Crandall, J. R., Ensafi, R., Forrest, S., Ladau, J., Shebaro, B. (2008). The ecology of Malware. Proceedings of the 2008 Workshop on New Security Paradigms - NSPW ’08. doi: https://doi.org/10.1145/1595676.1595692
- Fink, G. A., Haack, J. N., McKinnon, A. D., Fulp, E. W. (2014). Defense on the Move: Ant-Based Cyber Defense. IEEE Security & Privacy, 12 (2), 36–43. doi: https://doi.org/10.1109/msp.2014.21
- Wu, L., Wang, Y. (2011). Estimation the parameters of Lotka–Volterra model based on grey direct modelling method and its application. Expert Systems with Applications, 38 (6), 6412–6416. doi: https://doi.org/10.1016/j.eswa.2010.09.013
- Diz-Pita, É., Otero-Espinar, M. V. (2021). Predator–Prey Models: A Review of Some Recent Advances. Mathematics, 9 (15), 1783. doi: https://doi.org/10.3390/math9151783
- Minaev, V. A., Sychev, M. P., Vayts, E. V., Gracheva, Yu. V. (2016). Matematicheskaya model' "hischnik-zhertva" v sisteme informatsionnoy bezopasnosti. Informatsiya i bezopasnost', 19 (3), 397–400. Available at: https://elibrary.ru/item.asp?id=27186929
- Yevseiev, S., Laptiev, O., Lazarenko, S., Korchenko, A., Manzhul, I. (2021). Modeling the protection of personal data from trust and the amount of information on social networks. EUREKA: Physics and Engineering, 1, 24–31. doi: https://doi.org/10.21303/2461-4262.2021.001615
- Yevseiev, S., Melenti, Y., Voitko, O., Hrebeniuk, V., Korchenko, A., Mykus, S. et. al. (2021). Development of a concept for building a critical infrastructure facilities security system. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 63–83. doi: https://doi.org/10.15587/1729-4061.2021.233533
- Ya dogonyayu, ty ubegaesh'. Chto takoe model' Lotki-Vol'terry i kak ona pomogaet biologam. Available at: https://nplus1.ru/material/2019/12/04/lotka-volterra-model
- Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et. al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. doi: https://doi.org/10.15587/1729-4061.2020.205702
- ISO/IEC 27001:2013. Information technology – Security techniques – Information security management systems – Requirements. Available at: https://www.iso.org/standard/54534.html
- An Introduction to Factor Analysis of Information Risk (FAIR). Available at: https://www.yumpu.com/en/document/read/7271140/an-introduction-to-factor-analysis-of-information-risk-fair
- Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D. (2016). Report on Post-Quantum Cryptography. NISTIR. doi: https://doi.org/10.6028/nist.ir.8105
- Lohachab, A., Lohachab, A., Jangra, A. (2020). A comprehensive survey of prominent cryptographic aspects for securing communication in post-quantum IoT networks. Internet of Things, 9, 100174. doi: https://doi.org/10.1016/j.iot.2020.100174
- Ugrozy bezopasnosti yadra paketnoy seti 4G (2017). Available at: https://www.ptsecurity.com/ru-ru/research/analytics/epc-2017/
- Uyazvimosti protokola Diameter v setyah 4G (2018). Available at: https://www.ptsecurity.com/ru-ru/research/analytics/diameter-2018/
- Godovoy otchet o podverzhennosti kiberatakam sotrudnikov kompaniy v Rossii i SNG. Available at: https://welcome.tiger-optics.ru/антифишинг-годовой-отчет?_ga=2.171180576.1827066423.1631692491-524698473.1631692491
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Serhii Yevseiev, Serhii Pohasii, Stanislav Milevskyi, Oleksandr Milov, Yevgen Melenti, Ivan Grod, Denis Berestov, Ruslan Fedorenko, Oleg Kurchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.