Analyzing the code structures of multidimensional signals for a continuous information transmission channel

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.242357

Keywords:

continuous transmission channel, multidimensional signal, signal code construct, signal distance

Abstract

One of the directions to improve the efficiency of modern telecommunication systems is the transition to the use of multidimensional signals for continuous channels of information transmission. As a result of studies carried out in recent years, it has been established that it is possible to ensure high quality of information transmission in continuous channels by combining demodulation and decoding operations into a single procedure that involves the construction of a code construct for a multidimensional signal.

This paper considers issues related to estimating the possibility to improve the efficiency of continuous information transmission channel by changing the signal distance of the code structure.

It has been established that the code structures of such types as a hierarchical code construct of signals, a hierarchical code construct of signals with Euclidean metric, a reversible code construct of signals, a reversible code construct of signals with Euclidean metric have the potential, when used, to increase the speed of information transmission along a continuous channel. With a signal distance reduced by 10 percent or larger, it could increase by two times or faster.

The estimation of the effect of reducing a signal distance on the efficiency of certain types of code structures was carried out. It has been established that the hierarchical reversible code construct, compared to the hierarchical code construct, provides a win of up to two or more times in the speed of information transmission with a halved signal distance. Implementing the modulation procedure has no fundamental difficulties, on the condition that for each code of the code construct the encoding procedure is known when using binary codes. The results reported here make it possible to build an acceptably complex demodulation procedure according to the specified types of code structures

Author Biographies

Liubov Berkman, State University of Telecommunications

Doctor of Technical Sciences, Professor, Vice-rector for Scientific and Pedagogical Work

Olexandr Turovsky, National Aviation University

Doctor of Technical Sciences, Associate Professor

Department of Information Security

Liudmyla Kyrpach, State University of Telecommunications

PhD, Associate Professor

Department of Computer Engineering

Oksana Varfolomeeva, State University of Telecommunications

PhD, Associate Professor

Department of Telecommunication Systems and Networks

Volodymyr Dmytrenko, State University of Telecommunications

Postgraduate Student

Educational and Scientific Institute of Telecommunications

Oleksii Pokotylo, University of Ukraine named after Ivan Cherniakhovskyi

PhD

Research Centre of Military History

References

  1. Hemming, R. V. (1998). Teoriya kodirovaniya i teoriya informatsii. Moscow: «Radio i svyaz'», 176.
  2. Kasami, T. (1978). Teoriya kodirovaniya. Moscow: Mir, 576.
  3. Morelos-Saragosa, R. (2006). Iskusstvo pomekhoustoychivogo kodirovaniya. Metody, algoritmy, primenenie. Moscow: Tekhnosfera, 320.
  4. Polushin, P. A. (2007). Izbytochnost' signalov v radiosvyazi. Moscow: Radiotekhnika, 256.
  5. Varbanets, S. P. (2013). Teoriya kodirovaniya. Odessa: ONU, 43.
  6. Seletkov, V. L. (2010). Obschaya struktura lineynoy sistemy pomekhoustoychivogo kodirovaniya. Visti vyshchykh uchbovykh zakladiv. Radioelektronika, 53 (12), 24–31. doi: https://doi.org/10.20535/s0021347010120034
  7. Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L. (2014). Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proceedings of the IEEE, 102 (1), 56–103. doi: https://doi.org/10.1109/jproc.2013.2287851
  8. Wong, C. W., Wong, T. F., Shea, J. M. (2011). Secret-Sharing LDPC Codes for the BPSK-Constrained Gaussian Wiretap Channel. IEEE Transactions on Information Forensics and Security, 6 (3), 551–564. doi: https://doi.org/10.1109/tifs.2011.2139208
  9. Micheli, G., Neri, A. (2020). New Lower Bounds for Permutation Codes Using Linear Block Codes. IEEE Transactions on Information Theory, 66 (7), 4019–4025. doi: https://doi.org/10.1109/tit.2019.2957354
  10. Chen, P., Shi, L., Fang, Y., Cai, G., Wang, L., Chen, G. (2018). A Coded DCSK Modulation System Over Rayleigh Fading Channels. IEEE Transactions on Communications, 66 (9), 3930–3942. doi: https://doi.org/10.1109/tcomm.2018.2827032
  11. Jochym-O’Connor, T., Yoder, T. J. (2021). Four-dimensional toric code with non-Clifford transversal gates. Physical Review Research, 3 (1). doi: https://doi.org/10.1103/physrevresearch.3.013118
  12. Freudenberger, J., Ghaboussi, F., Shavgulidze, S. (2013). New Coding Techniques for Codes over Gaussian Integers. IEEE Transactions on Communications, 61 (8), 3114–3124. doi: https://doi.org/10.1109/tcomm.2013.061913.120742
  13. Park, J., Kim, I., Song, H.-Y. (2017). Interpretation of polar codes with Plotkin construction based on Gaussian approximation. 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA). doi: https://doi.org/10.1109/iwsda.2017.8097085
  14. Gnatyuk, S., Kinzeryavyy, V., Iavich, M., Prysiazhnyi, D., Yubuzova, K. (2018). High-performance reliable block encryption algorithms secured against linear and differential cryptanalytic attacks. Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshop. Kyiv, 2104, 657–668. Available at: http://ceur-ws.org/Vol-2104/paper_220.pdf
  15. Fogel, A., Koeyer, I., Secrist, C., Sipherd, A., Hafen, T., Fricke, M. (2021). The Revised Relational Coding System. doi: https://doi.org/10.13140/RG.2.2.27439.46245
  16. Batenkov, K. A. (2014). Continuous channel modeling in shape of some space transformation operators. SPIIRAS Proceedings, 1 (32), 171–198. doi: https://doi.org/10.15622/sp.32.11
  17. Boiko, J. M. (2014). Improvements Encoding Energy Benefit in Protected Telecommunication Data Transmission Channels. Communications, 2 (1), 7. doi: https://doi.org/10.11648/j.com.20140201.12
  18. Boiko, J., Pyatin, I., Eromenko, O., Stepanov, M. (2020). Method of the adaptive decoding of self-orthogonal codes in telecommunication. Indonesian Journal of Electrical Engineering and Computer Science, 19 (3), 1287. doi: https://doi.org/10.11591/ijeecs.v19.i3.pp1287-1296
  19. Gorcin, A. (2013). Multidimensional Signal Analysis for Wireless Communications Systems. Graduate Theses and Dissertations. Available at: https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=5877&context=etd
  20. Joo, H.-S., Kim, K.-H., No, J.-S., Shin, D.-J. (2017). New PTS Schemes for PAPR Reduction of OFDM Signals Without Side Information. IEEE Transactions on Broadcasting, 63 (3), 562–570. doi: https://doi.org/10.1109/tbc.2017.2711141
  21. Shamasundar, B., Chockalingam, A. (2020). Constellation Design for Media-Based Modulation Using Block Codes and Squaring Construction. IEEE Journal on Selected Areas in Communications, 38 (9), 2156–2167. doi: https://doi.org/10.1109/jsac.2020.3000828
  22. Vameghestahbanati, M., Marsland, I., Gohary, R. H., Yanikomeroglu, H. (2020). Hypercube-Based Multidimensional Constellation Design for Uplink SCMA Systems. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). doi: https://doi.org/10.1109/iccworkshops49005.2020.9145403
  23. Bloh, E. L., Zyablov, V. V. (1976). Obobschennye kaskadnye kody. Moscow: Svyaz', 240.
  24. Bleyhut, R. (1986). Teoriya i praktika kodov, kontroliruyuschih oshibki. Moscow: Mir, 576.
  25. Levina, B. R. (1979). Statisticheskaya teoriya svyazi i ee prakticheskie prilozheniya. Moscow: Svyaz', 376.
  26. Klark, D., Keyn, D. (1987). Kodirovanie s ispravleniem oshibok v sistemah tsifrovoy svyazi. Moscow: Radio i svyaz', 392.
  27. Danielsen, L. E. (2012). On the Classification of Hermitian Self-Dual Additive Codes Over GF(9). IEEE Transactions on Information Theory, 58 (8), 5500–5511. doi: https://doi.org/10.1109/tit.2012.2196255
  28. Norden, A. P. (2016). Elementarnoe vvedenie v geometriyu Lobachevskogo. Moscow: Lenan, 220.
  29. Kokseter, G., Mozer, Dzh. (1980). Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnyh grupp. Moscow: Nauka, 240.
  30. Zhurakovskyi, B. Iu. (2019). Research of the use of new antijamming codes for channels with elimination. Visnyk Derzhavnoho universytetu informatsiyno-komunikatsiynykh tekhnolohiy, 10 (2), 93–96. Available at: http://nbuv.gov.ua/UJRN/vduikt_2012_10_2_18
  31. Banket, V. L., Prokopov, S. D. (2000). Metod opredeleniya svobodnogo rasstoyaniya invariantnyh signal'no-kodovyh konstruktsiy. Pratsi UNDIRT, 1 (21), 39–44. Available at: https://biblio.suitt.edu.ua/bitstream/handle/123456789/1711/Банкет%2c%20Прокопов.pdf?sequence=1&isAllowed=y
  32. Polak, S. C. (2019). Semidefinite Programming Bounds for Constant-Weight Codes. IEEE Transactions on Information Theory, 65 (1), 28–38. doi: https://doi.org/10.1109/tit.2018.2854800
  33. Zhang, H., Zhang, X., Ge, G. (2012). Optimal Ternary Constant-Weight Codes With Weight 4 and Distance 5. IEEE Transactions on Information Theory, 58 (5), 2706–2718. doi: https://doi.org/10.1109/tit.2011.2179412
  34. Gnatyuk, S., Kinzeryavyy, V., Kyrychenko, K., Yubuzova, K., Aleksander, M., Odarchenko, R. (2020). Secure Hash Function Constructing for Future Communication Systems and Networks. Advances in Intelligent Systems and Computing, 561–569. doi: https://doi.org/10.1007/978-3-030-12082-5_51
  35. Brumnik, R., Kovtun, V., Okhrimenko, A., Kavun, S. (2014). Techniques for Performance Improvement of Integer Multiplication in Cryptographic Applications. Mathematical Problems in Engineering, 2014, 1–7. doi: https://doi.org/10.1155/2014/863617
  36. Odarchenko, R., Gnatyuk, V., Gnatyuk, S., Abakumova, A. (2018). Security Key Indicators Assessment for Modern Cellular Networks. 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). doi: https://doi.org/10.1109/saic.2018.8516889

Downloads

Published

2021-10-31

How to Cite

Berkman, L., Turovsky, O., Kyrpach, L., Varfolomeeva, O., Dmytrenko, V., & Pokotylo, O. (2021). Analyzing the code structures of multidimensional signals for a continuous information transmission channel. Eastern-European Journal of Enterprise Technologies, 5(9 (113), 70–81. https://doi.org/10.15587/1729-4061.2021.242357

Issue

Section

Information and controlling system