Defining patterns in the dynamic load and strength of the bearing structure of a covered freight car with a filler in the girder beam

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.243866

Keywords:

transport mechanics, covered freight car, load-bearing structure, dynamic load, innovative freight car

Abstract

This paper reports a study into determining the dynamic load and strength of the bearing structure of a covered freight car under operational modes. A feature of the freight car's bearing structure is that the girder beam has a closed cross-section. To reduce the dynamic load of the frame, the girder beam is filled with a material with viscoelastic properties. Such a solution could contribute to the transformation of the kinetic energy of impact (due to jerk, stretching, compression) into work of viscoelastic friction forces, and, consequently, to reducing the load on the bearing structure.

To substantiate the proposed improvement, the dynamic load on the bearing structure of a covered freight car was mathematically modeled. The calculation was performed for the case of joint impacts at shunting. The study was carried out in a flat coordinate system. It was established that the maximum accelerations acting on the bearing structure of a covered freight car were about 37 m/s2. The calculated acceleration value is 3.2 % lower than that obtained for the bearing structure of a covered freight car without filler.

The results of calculating the strength of the load-bearing structure of a covered freight car are given. In this case, a finite-element method was applied. The maximum equivalent stresses occur in the zones of interaction between the girder beam and the pivot beams, and amount to 319.5 MPa, which is 8 % lower than permissible. The calculation was also performed regarding other operational modes of loading the freight car's bearing structure.

The model of the dynamic load on the bearing structure of a covered freight car was verified according to the F-criterion.

The research reported here could contribute to designing innovative rolling stock structures, thereby improving the efficiency of their operation.

Author Biographies

Sergii Panchenko, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor, Rector

Oleksij Fomin, State University of Infrastructure and Technologies

Doctor of Technical Sciences, Professor

Department of Cars and Carriage Facilities

Glib Vatulia, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor, Vice-Rector for Science

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Associate Professor

Department of Wagon Engineering and Product Quality

Oleksandr Bahrov, State Enterprise “Ukrainian Scientific Railway Car Building Research Institute”

PhD, Head of Research Laboratory

Laboratory of Scientific and Experimental Research on Static Strength and Fatigue of Railway Structures, Nondestructive Testing and Material Properties

Dmytro Fedosov-Nikonov, State Enterprise “Ukrainian Scientific Railway Car Building Research Institute”

PhD, Senior Researcher

Andrij Rybin, Ukrainian State University of Railway Transport

Senior Lecturer

Department of Wagon Engineering and Product Quality

References

  1. Soloviova, L., Strelko, O., Isaienko, S., Soloviova, O., Berdnychenko, Y. (2020). Container Transport System as a Means of Saving Resources. IOP Conference Series: Earth and Environmental Science, 459, 052070. doi: https://doi.org/10.1088/1755-1315/459/5/052070
  2. Strelko, O. H., Kyrychenko, H. I., Berdnychenko, Y. A., Sorochynska, O. L., Pylypchuk, Ya. O. (2019). Application of Information Technologies for Automation of Railway and Cargo Owner Interaction. IOP Conference Series: Materials Science and Engineering, 582, 012029. doi: https://doi.org/10.1088/1757-899x/582/1/012029
  3. Bondarenko, V., Skurikhin, D., Wojciechowski, J. (2019). The Application of Lithium-Ion Batteries for Power Supply of Railway Passenger Cars and Key Approaches for System Development. Smart and Green Solutions for Transport Systems, 114–125. doi: https://doi.org/10.1007/978-3-030-35543-2_10
  4. Bondarenko, V. V., Skurikhin, D. I., Vizniak, R. I., Ravlyuk, V. H., Skurikhin, V. I. (2019). Experimental study of the method and device for wheel-sets acoustic monitoring of railway cars in motion. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 30–36. doi: https://doi.org/10.29202/nvngu/2019-4/7
  5. Shi, H., Wang, L., Nicolsen, B., Shabana, A. A. (2017). Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 231 (4), 608–629. doi: https://doi.org/10.1177/1464419317696418
  6. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  7. Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: https://doi.org/10.15587/1729-4061.2017.118565
  8. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  9. Chepurnoy, A. D., Litvinenko, A. V., Baranov, A. N., SHeychenko, R. I., Bondarenko, M. A. (2014). Eksperimental'nye issledovaniya gruzovogo vagona. Visnyk NTU «KhPI», 22 (1065), 44–61.
  10. Bityutskiy, A. A., Afanasyev, A. Ye., Khilov, I. A., Guskov, V. I. (2015). Bench run for resistance to fatigue of cobbled units of a covered wagon for car transportation. Transport Rossiyskoy Federacii, 3 (58), 81–85. Available at: https://cyberleninka.ru/article/n/15930830.pdf
  11. Antipin, D. Y., Racin, D. Y., Shorokhov, S. G. (2016). Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation. Procedia Engineering, 150, 150–154. doi: https://doi.org/10.1016/j.proeng.2016.06.738
  12. Sepe, R., Pozzi, A. (2015). Static and modal numerical analyses for the roof structure of a railway freight refrigerated car. Frattura Ed Integrità Strutturale, 9 (33), 451–462. doi: https://doi.org/10.3221/igf-esis.33.50
  13. Lee, H.-A., Jung, S.-B., Jang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (4), 1283–1296. doi: https://doi.org/10.1177/0954409715593971
  14. Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
  15. Fomin, O., Gorbunov, M., Lovska, A., Gerlici, J., Kravchenko, K. (2021). Dynamics and Strength of Circular Tube Open Wagons with Aluminum Foam Filled Center Sills. Materials, 14 (8), 1915. doi: https://doi.org/10.3390/ma14081915
  16. Sokolov, A. M., Savushkina, Yu. V., Novoselov, A. Yu., Korotkov, D. S. (2019). Universal'niy profil' dlya hrebtovoy balki vagonov. Transport Rossiyskoy Federacii, 1 (80), 50–55. Available at: https://cyberleninka.ru/article/n/universalnyy-profil-dlya-hrebtovoy-balki-vagonov
  17. Matsika, E., O’Neill, C., Grasso, M., De Iorio, A. (2016). Selection and ranking of the main beam geometry of a freight wagon for lightweighting. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (2), 495–513. doi: https://doi.org/10.1177/0954409716677075
  18. Hosseini-Tehrani, P., Bayat, V. (2011). Study on crashworthiness of wagon's frame under frontal impact. International Journal of Crashworthiness, 16 (1), 25–39. doi: https://doi.org/10.1080/13588265.2010.499698
  19. Bogomaz, G. I., Mehov, D. D., Pilipchenko, O. P., Chernomashenceva, Yu. G. (1992). Nagruzhennost' konteynerov-cistern, raspolozhennyh na zheleznodorozhnoy platforme, pri udarah v avtoscepku. Dynamika ta keruvannia rukhom mekhanichnykh system. Kyiv: ANU, Instytut tekhnichnoi mekhaniky, 87–95.
  20. DSTU 7598:2014. Freight Wagons. General reguirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv. Available at: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=73763
  21. GOST 33211-2014. Freight wagons. Requirements to structural strength and dynamic qualities (2016). Moscow.
  22. Normy dlya rascheta i proektirovaniya vagonov zheleznyh dorog MPS kolei 1520 mm (nesamohodnyh) (1996). Moscow: GosNIIV – VNIIZhT, 319.
  23. Kir'yanov, D. V. (2006). Mathcad 13. Sankt-Peterburg: BHV-Peterburg, 608. Available at: https://elprivod.nmu.org.ua/files/mathapps/%D0%9A%D0%B8%D1%80%D1%8C%D1%8F%D0%BD%D0%BE%D0%B2_mathcad_13.pdf
  24. D'yakonov, V. (2000). MATHCAD 8/2000: special'niy spravochnik. Sankt-Peterburg: Piter, 592.
  25. Fomin, O., Lovska, A., Píštěk, V., Kučera, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138
  26. Lovskaya, A. (2015). Computer simulation of wagon body bearing structure dynamics during transportation by train ferry. Eastern-European Journal of Enterprise Technologies, 3 (7 (75)), 9–14. doi: https://doi.org/10.15587/1729-4061.2015.43749
  27. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  28. Fomin, O. V. (2015). Improvement of upper bundling of side wall of gondola cars of 12-9745 model. Metallurgical and Mining Industry, 1, 45–48. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_1/9%20Fomin.pdf
  29. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  30. Goolak, S., Gubarevych, O., Yermolenko, E., Slobodyanyuk, M., Gorobchenko, O. (2020). Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies, 2 (2 (104)), 25–34. doi: https://doi.org/10.15587/1729-4061.2020.199559
  31. Vatulia, G., Komagorova, S., Pavliuchenkov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi: https://doi.org/10.1051/matecconf/201823002037
  32. Gallager, R. (1984). Metod konechnyh elementov. Osnovy. Moscow: Mir, 428.
  33. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6), 478–485. doi: https://doi.org/10.14311/ap.2020.60.0478
  34. Alieinykov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
  35. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  36. Krol, O., Sokolov, V. (2020). Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. Lecture Notes in Mechanical Engineering, 35–44. doi: https://doi.org/10.1007/978-3-030-50794-7_4
  37. Krol, O., Porkuian, O., Sokolov, V., Tsankov, P. (2019). Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences, 72 (11), 1546–1556. doi: https://doi.org/10.7546/crabs.2019.11.12
  38. EN 12663-2:2010. Railway applications - structural requirements of railway vehicle bodies - Part 2: Freight wagons (2010). B., 54.
  39. Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Moscow: Fizmatlit, 816.
  40. Ivchenko, G. I., Medvedev, Yu. I. (2014). Matematicheskaya statistika. Moscow: Librokom, 352.
  41. Rudenko, V. M. (2012). Matematychna statystyka. Kyiv: Tsentr uchbovoi literatury, 304.
  42. Kosmin, V. V. (2007). Osnovy nauchnyh issledovaniy. Moscow: GOU «Uchebno-metodicheskiy centr po obrazovaniyu na zheleznodorozhnom transporte», 271.
  43. Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Inzhenernyy analiz metodom konechnyh elementov. Moscow: DMK, 784.
  44. Alyamovskiy, A. A. (2010). COSMOSWorks. Osnovy rascheta konstrukciy na prochnost' v srede SolidWorks. Moscow: DMK, 784.
  45. Píštěk, V., Kučera, P., Fomin, O., Lovska, A. (2020). Effective Mistuning Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: https://doi.org/10.3390/jmse8050379
  46. Vatulia, G., Rezunenko, M., Orel, Y., Petrenko, D. (2017). Regression equations for circular CFST columns carrying capacity evaluation. MATEC Web of Conferences, 107, 00051. doi: https://doi.org/10.1051/matecconf/201710700051
  47. Nandan, S., Trivedi, R., Kant, S., Ahmad, J., Maniraj, M. (2020). Design, analysis and prototype development of railway wagons on different loading conditions. International Journal of Engineering Applied Sciences and Technology, 04 (10), 122–129. doi: https://doi.org/10.33564/ijeast.2020.v04i10.023
  48. Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162
  49. Pɫaczek, M., Wróbel, A., Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. doi: https://doi.org/10.1088/1757-899x/161/1/012107
  50. Harak, S. S., Sharma, S. C., Harsha, S. P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Materials Science, 6, 1891–1898. doi: https://doi.org/10.1016/j.mspro.2014.07.221

Downloads

Published

2021-12-21

How to Cite

Panchenko, S., Fomin, O., Vatulia, G., Lovska, A., Bahrov, O., Fedosov-Nikonov, D., & Rybin, A. (2021). Defining patterns in the dynamic load and strength of the bearing structure of a covered freight car with a filler in the girder beam . Eastern-European Journal of Enterprise Technologies, 6(7 (114), 68–76. https://doi.org/10.15587/1729-4061.2021.243866

Issue

Section

Applied mechanics