Defining patterns in the dynamic load and strength of the bearing structure of a covered freight car with a filler in the girder beam
DOI:
https://doi.org/10.15587/1729-4061.2021.243866Keywords:
transport mechanics, covered freight car, load-bearing structure, dynamic load, innovative freight carAbstract
This paper reports a study into determining the dynamic load and strength of the bearing structure of a covered freight car under operational modes. A feature of the freight car's bearing structure is that the girder beam has a closed cross-section. To reduce the dynamic load of the frame, the girder beam is filled with a material with viscoelastic properties. Such a solution could contribute to the transformation of the kinetic energy of impact (due to jerk, stretching, compression) into work of viscoelastic friction forces, and, consequently, to reducing the load on the bearing structure.
To substantiate the proposed improvement, the dynamic load on the bearing structure of a covered freight car was mathematically modeled. The calculation was performed for the case of joint impacts at shunting. The study was carried out in a flat coordinate system. It was established that the maximum accelerations acting on the bearing structure of a covered freight car were about 37 m/s2. The calculated acceleration value is 3.2 % lower than that obtained for the bearing structure of a covered freight car without filler.
The results of calculating the strength of the load-bearing structure of a covered freight car are given. In this case, a finite-element method was applied. The maximum equivalent stresses occur in the zones of interaction between the girder beam and the pivot beams, and amount to 319.5 MPa, which is 8 % lower than permissible. The calculation was also performed regarding other operational modes of loading the freight car's bearing structure.
The model of the dynamic load on the bearing structure of a covered freight car was verified according to the F-criterion.
The research reported here could contribute to designing innovative rolling stock structures, thereby improving the efficiency of their operation.
References
- Soloviova, L., Strelko, O., Isaienko, S., Soloviova, O., Berdnychenko, Y. (2020). Container Transport System as a Means of Saving Resources. IOP Conference Series: Earth and Environmental Science, 459, 052070. doi: https://doi.org/10.1088/1755-1315/459/5/052070
- Strelko, O. H., Kyrychenko, H. I., Berdnychenko, Y. A., Sorochynska, O. L., Pylypchuk, Ya. O. (2019). Application of Information Technologies for Automation of Railway and Cargo Owner Interaction. IOP Conference Series: Materials Science and Engineering, 582, 012029. doi: https://doi.org/10.1088/1757-899x/582/1/012029
- Bondarenko, V., Skurikhin, D., Wojciechowski, J. (2019). The Application of Lithium-Ion Batteries for Power Supply of Railway Passenger Cars and Key Approaches for System Development. Smart and Green Solutions for Transport Systems, 114–125. doi: https://doi.org/10.1007/978-3-030-35543-2_10
- Bondarenko, V. V., Skurikhin, D. I., Vizniak, R. I., Ravlyuk, V. H., Skurikhin, V. I. (2019). Experimental study of the method and device for wheel-sets acoustic monitoring of railway cars in motion. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 30–36. doi: https://doi.org/10.29202/nvngu/2019-4/7
- Shi, H., Wang, L., Nicolsen, B., Shabana, A. A. (2017). Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 231 (4), 608–629. doi: https://doi.org/10.1177/1464419317696418
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
- Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: https://doi.org/10.15587/1729-4061.2017.118565
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
- Chepurnoy, A. D., Litvinenko, A. V., Baranov, A. N., SHeychenko, R. I., Bondarenko, M. A. (2014). Eksperimental'nye issledovaniya gruzovogo vagona. Visnyk NTU «KhPI», 22 (1065), 44–61.
- Bityutskiy, A. A., Afanasyev, A. Ye., Khilov, I. A., Guskov, V. I. (2015). Bench run for resistance to fatigue of cobbled units of a covered wagon for car transportation. Transport Rossiyskoy Federacii, 3 (58), 81–85. Available at: https://cyberleninka.ru/article/n/15930830.pdf
- Antipin, D. Y., Racin, D. Y., Shorokhov, S. G. (2016). Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation. Procedia Engineering, 150, 150–154. doi: https://doi.org/10.1016/j.proeng.2016.06.738
- Sepe, R., Pozzi, A. (2015). Static and modal numerical analyses for the roof structure of a railway freight refrigerated car. Frattura Ed Integrità Strutturale, 9 (33), 451–462. doi: https://doi.org/10.3221/igf-esis.33.50
- Lee, H.-A., Jung, S.-B., Jang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (4), 1283–1296. doi: https://doi.org/10.1177/0954409715593971
- Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
- Fomin, O., Gorbunov, M., Lovska, A., Gerlici, J., Kravchenko, K. (2021). Dynamics and Strength of Circular Tube Open Wagons with Aluminum Foam Filled Center Sills. Materials, 14 (8), 1915. doi: https://doi.org/10.3390/ma14081915
- Sokolov, A. M., Savushkina, Yu. V., Novoselov, A. Yu., Korotkov, D. S. (2019). Universal'niy profil' dlya hrebtovoy balki vagonov. Transport Rossiyskoy Federacii, 1 (80), 50–55. Available at: https://cyberleninka.ru/article/n/universalnyy-profil-dlya-hrebtovoy-balki-vagonov
- Matsika, E., O’Neill, C., Grasso, M., De Iorio, A. (2016). Selection and ranking of the main beam geometry of a freight wagon for lightweighting. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (2), 495–513. doi: https://doi.org/10.1177/0954409716677075
- Hosseini-Tehrani, P., Bayat, V. (2011). Study on crashworthiness of wagon's frame under frontal impact. International Journal of Crashworthiness, 16 (1), 25–39. doi: https://doi.org/10.1080/13588265.2010.499698
- Bogomaz, G. I., Mehov, D. D., Pilipchenko, O. P., Chernomashenceva, Yu. G. (1992). Nagruzhennost' konteynerov-cistern, raspolozhennyh na zheleznodorozhnoy platforme, pri udarah v avtoscepku. Dynamika ta keruvannia rukhom mekhanichnykh system. Kyiv: ANU, Instytut tekhnichnoi mekhaniky, 87–95.
- DSTU 7598:2014. Freight Wagons. General reguirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv. Available at: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=73763
- GOST 33211-2014. Freight wagons. Requirements to structural strength and dynamic qualities (2016). Moscow.
- Normy dlya rascheta i proektirovaniya vagonov zheleznyh dorog MPS kolei 1520 mm (nesamohodnyh) (1996). Moscow: GosNIIV – VNIIZhT, 319.
- Kir'yanov, D. V. (2006). Mathcad 13. Sankt-Peterburg: BHV-Peterburg, 608. Available at: https://elprivod.nmu.org.ua/files/mathapps/%D0%9A%D0%B8%D1%80%D1%8C%D1%8F%D0%BD%D0%BE%D0%B2_mathcad_13.pdf
- D'yakonov, V. (2000). MATHCAD 8/2000: special'niy spravochnik. Sankt-Peterburg: Piter, 592.
- Fomin, O., Lovska, A., Píštěk, V., Kučera, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138
- Lovskaya, A. (2015). Computer simulation of wagon body bearing structure dynamics during transportation by train ferry. Eastern-European Journal of Enterprise Technologies, 3 (7 (75)), 9–14. doi: https://doi.org/10.15587/1729-4061.2015.43749
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Fomin, O. V. (2015). Improvement of upper bundling of side wall of gondola cars of 12-9745 model. Metallurgical and Mining Industry, 1, 45–48. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_1/9%20Fomin.pdf
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Goolak, S., Gubarevych, O., Yermolenko, E., Slobodyanyuk, M., Gorobchenko, O. (2020). Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies, 2 (2 (104)), 25–34. doi: https://doi.org/10.15587/1729-4061.2020.199559
- Vatulia, G., Komagorova, S., Pavliuchenkov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi: https://doi.org/10.1051/matecconf/201823002037
- Gallager, R. (1984). Metod konechnyh elementov. Osnovy. Moscow: Mir, 428.
- Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6), 478–485. doi: https://doi.org/10.14311/ap.2020.60.0478
- Alieinykov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Krol, O., Sokolov, V. (2020). Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. Lecture Notes in Mechanical Engineering, 35–44. doi: https://doi.org/10.1007/978-3-030-50794-7_4
- Krol, O., Porkuian, O., Sokolov, V., Tsankov, P. (2019). Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences, 72 (11), 1546–1556. doi: https://doi.org/10.7546/crabs.2019.11.12
- EN 12663-2:2010. Railway applications - structural requirements of railway vehicle bodies - Part 2: Freight wagons (2010). B., 54.
- Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Moscow: Fizmatlit, 816.
- Ivchenko, G. I., Medvedev, Yu. I. (2014). Matematicheskaya statistika. Moscow: Librokom, 352.
- Rudenko, V. M. (2012). Matematychna statystyka. Kyiv: Tsentr uchbovoi literatury, 304.
- Kosmin, V. V. (2007). Osnovy nauchnyh issledovaniy. Moscow: GOU «Uchebno-metodicheskiy centr po obrazovaniyu na zheleznodorozhnom transporte», 271.
- Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Inzhenernyy analiz metodom konechnyh elementov. Moscow: DMK, 784.
- Alyamovskiy, A. A. (2010). COSMOSWorks. Osnovy rascheta konstrukciy na prochnost' v srede SolidWorks. Moscow: DMK, 784.
- Píštěk, V., Kučera, P., Fomin, O., Lovska, A. (2020). Effective Mistuning Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: https://doi.org/10.3390/jmse8050379
- Vatulia, G., Rezunenko, M., Orel, Y., Petrenko, D. (2017). Regression equations for circular CFST columns carrying capacity evaluation. MATEC Web of Conferences, 107, 00051. doi: https://doi.org/10.1051/matecconf/201710700051
- Nandan, S., Trivedi, R., Kant, S., Ahmad, J., Maniraj, M. (2020). Design, analysis and prototype development of railway wagons on different loading conditions. International Journal of Engineering Applied Sciences and Technology, 04 (10), 122–129. doi: https://doi.org/10.33564/ijeast.2020.v04i10.023
- Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162
- Pɫaczek, M., Wróbel, A., Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. doi: https://doi.org/10.1088/1757-899x/161/1/012107
- Harak, S. S., Sharma, S. C., Harsha, S. P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Materials Science, 6, 1891–1898. doi: https://doi.org/10.1016/j.mspro.2014.07.221
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Sergii Panchenko, Oleksij Fomin, Glib Vatulia, Alyona Lovska, Oleksandr Bahrov, Dmytro Fedosov-Nikonov, Andrij Rybin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.