Improving the technology for manufacturing hollow cylindrical parts for vehicles by refining technological estimation dependences
DOI:
https://doi.org/10.15587/1729-4061.2021.244241Keywords:
technological process, matrix, drawing, plastic deformation, flat workpiece, rounding radius, meridional stressesAbstract
This paper shows that the technological preparation of production accounts for 20‒70 % of the total labor intensity of technical preparation. An important role belongs to the applied programs of finite-element modeling. However, such software packages often cannot be purchased by small-scale industrial enterprises for various reasons. Therefore, special empirical and analytical calculation models are used, which have proved to be quite effective in typical metal processing processes. Drawing a cylindrical hollow part was used as an example of the improved analytical dependence to calculate meridional tensile stresses. Existing analytical models of the process accounted for the bending moment through additional stresses. However, this approach only roughly described the deformation process. It was possible to refine the existing analytical dependences by introducing a term into the differential equilibrium equations that takes into consideration the bending moment that acts in the meridional direction when a workpiece passes the rounding on the matrix edge. Analysis of the obtained expression revealed that the bending of a workpiece gives rise to the stretching meridional stresses, which depend on the ratio of the squares of the thickness of the workpiece and the radius of the matrix rounding. The results of the estimation data from the numerical and theoretical models coincided for small values of the radius of the matrix rounding of 1‒2 mm, which confirms the adequacy of the analytical solution. In the numerical model, there is an extreme point where the tensile stresses have a minimum and, after it, begin to increase; this corresponds to the matrix rounding radius of 5 mm
References
- Rojek, I. (2016). Technological process planning by the use of neural networks. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 31 (1), 1–15. doi: https://doi.org/10.1017/s0890060416000147
- Dima, I. C., Grabara, J. (2013). The Constructive and Technological Preparation of Production. Industrial Production Management in Flexible Manufacturing Systems, 68–109. doi: https://doi.org/10.4018/978-1-4666-2818-2.ch003
- Puzyr, R., Kukhar, V., Maslov, A., Shchipkovsky, Y. (2018). The Development of the Method for the Calculation of the Shaping Force in the Production of Vehicle Wheel Rims. International Journal of Engineering & Technology, 7 (4.3), 30. doi: https://doi.org/10.14419/ijet.v7i4.3.20128
- Khrustaleva, I. N., Lyubomudrov, S. A., Romanov, P. I. (2018) Automation of technological preparation of production in single-unit and small-batch manufacturing. St. Petersburg polytechnic university journal of engineering science and technology, 24 (01), 113–121. doi: https://doi.org/10.18721/JEST.240111
- Puzyr, R., Klimov, E., Chernish, A., Chernenko, S., Sira, Y. (2021). The Optimal Conditions for Adding Strain to the Deformation Zone During the Expansion of Automobile Pipe Adapters. Advances in Design, Simulation and Manufacturing IV, 104–113. doi: https://doi.org/10.1007/978-3-030-77719-7_11
- Tipner, L. M., Ishakova, N. R., Yeltsin, B. N. (2019). Problems of organization in conditions of unit and small batch production. Journal of Economy and Business, 5-3, 97–102. doi: https://doi.org/10.24411/2411-0450-2019-10733
- Prasad, N. (2012). Small-Scale Activities and Productivity Divide. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.2323421
- Sigmund, O., Maute, K. (2013). Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 48 (6), 1031–1055. doi: https://doi.org/10.1007/s00158-013-0978-6
- Safarov, D. T., Fedorov, K. A., Ilyasova, A. I. (2016). Algorithms development of making special techniques in APQP manufacturing process of automotive components. IOP Conference Series: Materials Science and Engineering, 134, 012036. doi: https://doi.org/10.1088/1757-899x/134/1/012036
- Puzyr, R. H., Shchetynin, V. T., Arhat, R. H., Sira, Y. B., Muravlov, V. V., Kravchenko, S. I. (2021). Numerical modeling of pipe parts of agricultural machinery expansion by stepped punches. IOP Conference Series: Materials Science and Engineering, 1018, 012013. doi: https://doi.org/10.1088/1757-899x/1018/1/012013
- Puzyr, R., Markov, O., Savielov, D., Chernysh, A., Sira, Y. (2021). Finite-Element Simulation of the Process of the Tubular Workpiece Expansion in the Manufacture of Automotive Parts. Advanced Manufacturing Processes II, 433–442. doi: https://doi.org/10.1007/978-3-030-68014-5_43
- Salenko, Y., Puzyr, R., Shevchenko, O., Kulynych, V., Pedun, O. (2020). Numerical Simulation of Local Plastic Deformations of a Cylindrical Workpiece of a Steel Wheel Rim. Lecture Notes in Mechanical Engineering, 442–451. doi: https://doi.org/10.1007/978-3-030-50794-7_43
- Haikova, T., Puzyr, R., Dragobetsky, V., Symonova, A., Vakylenko, R. (2020). Finite-Element Model of Bimetal Billet Strain Obtaining Box-Shaped Parts by Means of Drawing. Advances in Design, Simulation and Manufacturing II, 85–94. doi: https://doi.org/10.1007/978-3-030-22365-6_9
- Markov, O., Gerasimenko, O., Khvashchynskyi, A., Zhytnikov, R., Puzyr, R. (2019). Modeling the techological process of pipe forging without a mandrel. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 42–48. doi: https://doi.org/10.15587/1729-4061.2019.167077
- Popov, E. A. (1977). Osnovy teorii listovoy shtampovki. Moscow: Mashinostroenie, 278.
- Wang, X., Cao, J. (2000). An Analytical Prediction of Flange Wrinkling in Sheet Metal Forming. Journal of Manufacturing Processes, 2 (2), 100–107. doi: https://doi.org/10.1016/s1526-6125(00)70017-x
- Yakovlev, S. S., Remnev, K. S., Kalashnikov, A. E. (2012). Poterya ustoychivosti flanca anizotropnoy zagotovki pri vytyazhke osesimmetrichnyh detaley. Obrabotka materialov davleniem, 1 (30), 156–163.
- Romanovskiy, V. P. (1979). Spravochnik po holodnoy shtampovke. Leningrad: Mashinostroenie, 520.
- Arhat, R., Puzyr, R., Shchetynin, V., Moroz, M. (2021). The Manufacture of Cylindrical Parts by Drawing Using a Telescopic Punch. Advanced Manufacturing Processes II, 363–372. doi: https://doi.org/10.1007/978-3-030-68014-5_36
- Zheng, K., Politis, D. J., Wang, L., Lin, J. (2018). A review on forming techniques for manufacturing lightweight complex – shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 1 (2), 55–80. doi: https://doi.org/10.1016/j.ijlmm.2018.03.006
- Lee, E.-H., Stoughton, T. B., Yoon, J. W. (2017). A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. International Journal of Plasticity, 99, 120–143. doi: https://doi.org/10.1016/j.ijplas.2017.08.007
- Stoughton, T. B. (2002). A non-associated flow rule for sheet metal forming. International Journal of Plasticity, 18 (5-6), 687–714. doi: https://doi.org/10.1016/s0749-6419(01)00053-5
- Liu, X., Fakir, O. E., Meng, L., Sun, X., Li, X., Wang, L. (2018). Effects of lubricant on the IHTC during the hot stamping of AA6082 aluminium alloy: Experimental and modelling studies. Journal of Materials Processing Technology, 255, 175–183. doi: https://doi.org/10.1016/j.jmatprotec.2017.12.013
- Hartl, C. (2005). Research and advances in fundamentals and industrial applications of hydroforming. Journal of Materials Processing Technology, 167 (2-3), 383–392. doi: https://doi.org/10.1016/j.jmatprotec.2005.06.035
- G.-Romeu, M. L., de Ciurana, Q. (2004). Design and Manufacturing Assistance Tool for Drawing Sheet Metal Parts. Cooperative Design, Visualization, and Engineering, 123–132. doi: https://doi.org/10.1007/978-3-540-30103-5_14
- Araghi, B. T., Manco, G. L., Bambach, M., Hirt, G. (2009). Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming. CIRP Annals, 58 (1), 225–228. doi: https://doi.org/10.1016/j.cirp.2009.03.101
- Zein, H., El-Sherbiny, M., Abd-Rabou, M., El Shazly, M. (2013). Effect of Die Design Parameters on Thinning of Sheet Metal in the Deep Drawing Process. American Journal of Mechanical Engineering, 1 (2), 20–29. doi: https://doi.org/10.12691/ajme-1-2-1
- Vladimirov, I. N., Pietryga, M. P., Reese, S. (2010). Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. International Journal of Plasticity, 26 (5), 659–687. doi: https://doi.org/10.1016/j.ijplas.2009.09.008
- Gali, O. A., Riahi, A. R., Alpas, A. T. (2013). The tribological behaviour of AA5083 alloy plastically deformed at warm forming temperatures. Wear, 302 (1-2), 1257–1267. doi: https://doi.org/10.1016/j.wear.2012.12.048
- Shi, Z., Wang, L., Mohamed, M., Balint, D. S., Lin, J., Stanton, M. et. al. (2017). A new design of friction test rig and determination of friction coefficient when warm forming an aluminium alloy. Procedia Engineering, 207, 2274–2279. doi: https://doi.org/10.1016/j.proeng.2017.10.994
- Afshin, E., Kadkhodayan, M. (2015). An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes. Materials & Design, 87, 25–35. doi: https://doi.org/10.1016/j.matdes.2015.07.061
- Khandeparkar, T., Liewald, M. (2008). Hydromechanical deep drawing of cups with stepped geometries. Journal of Materials Processing Technology, 202 (1-3), 246–254. doi: https://doi.org/10.1016/j.jmatprotec.2007.08.072
- Heftrich, C., Steinheimer, R., Engel, B. (2018). Rotary-draw-bending using tools with reduced geometries. Procedia Manufacturing, 15, 804–811. doi: https://doi.org/10.1016/j.promfg.2018.07.410
- Puzyr, R., Haikova, T., Majerník, J., Karkova, M., Kmec, J. (2018). Experimental Study of the Process of Radial Rotation Profiling of Wheel Rims Resulting in Formation and Technological Flattening of the Corrugations. Manufacturing Technology, 18 (1), 106–111. doi: https://doi.org/10.21062/ujep/61.2018/a/1213-2489/mt/18/1/106
- Slater, R. (1977). Engineering and Plasticity: Theory and Application to Metal Forming Processes. London: Macmillan, 432.
- Agarwal, R. P., Grace, S. R., O’Regan, D. (2002). Oscillation and Nonoscillation of Linear Ordinary Differential Equations. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, 13–92. doi: https://doi.org/10.1007/978-94-017-2515-6_2
- Il'yushin, A. A. (1948). Plastichnost'. Moscow-Leningrad: Gostehizdat, 376.
- Volmir, A. (1967). Ustoychivost' deformiruemyh sistem. Moscow: Nauka, 984.
- Taber, L. A. (1988). On a theory for large elastic deformation of shells of revolution including torsion and thick-shell effects. International Journal of Solids and Structures, 24 (9), 973–985. doi: https://doi.org/10.1016/0020-7683(88)90045-5
- Maslov, A., Batsaikhan, J., Puzyr, R., Salenko, Y. (2018). The Determination of the Parameters of a Vibration Machinef the Internal Compaction of Concrete Mixtures. International Journal of Engineering & Technology, 7 (4.3), 12. doi: https://doi.org/10.14419/ijet.v7i4.3.19545
- Prager, V. (1955). Probleme der plastizitätstheorie. Birkhäuser. doi: https://doi.org/10.1007/978-3-0348-6928-7
- Puzyr, R., Savelov, D., Shchetynin, V., Levchenko, R., Haikova, T., Kravchenko, S. et. al. (2018). Development of a method to determine deformations in the manufacture of a vehicle wheel rim. Eastern-European Journal of Enterprise Technologies, 4 (1 (94)), 55–60. doi: https://doi.org/10.15587/1729-4061.2018.139534
- Haikova, T. V., Puzyr, R. H., Levchenko, R. V. (2020). Experimental Studies on the Stress-Strain State under Drawing Aluminum–Copper Bimetal Parts Rectangular in Plan. Russian Journal of Non-Ferrous Metals, 61 (4), 404–412. doi: https://doi.org/10.3103/s1067821220040033
- Arhat, R., Puzyr, R., Shchetynin, V., Puzyr, V., Haikova, T. (2021). The Contact Pressure in Drawing Parts Without Clamping the Workpiece Flange. Advances in Design, Simulation and Manufacturing IV, 12–20. doi: https://doi.org/10.1007/978-3-030-77719-7_2
- Neto, D. M., Oliveira, M. C., Alves, J. L., Menezes, L. F. (2014). Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation. Materials & Design, 60, 368–379. doi: https://doi.org/10.1016/j.matdes.2014.04.008
- Yoon, J. W., Dick, R. E., Barlat, F. (2011). A new analytical theory for earing generated from anisotropic plasticity. International Journal of Plasticity, 27 (8), 1165–1184. doi: https://doi.org/10.1016/j.ijplas.2011.01.002
- Sosenushkin, E. N., Yanovskaya, E. A., Sosenushkin, A. E., Emel’yanov, V. V. (2015). Mechanics of nonmonotonic plastic deformation. Russian Engineering Research, 35 (12), 902–906. doi: https://doi.org/10.3103/s1068798x15120199
- Van der Put, M., Singer, M. F. (2003). Galois Theory of Linear Differential Equations. Grundlehren Der Mathematischen Wissenschaften. doi: https://doi.org/10.1007/978-3-642-55750-7
- Barrett, J. H. (1969). Oscillation theory of ordinary linear differential equations. Advances in Mathematics, 3 (4), 415–509. doi: https://doi.org/10.1016/0001-8708(69)90008-5
- Džurina, J., Baculíková, B., Jadlovská, I. (2015). Kneser solutions of fourth-order trinomial delay differential equations. Applied Mathematics Letters, 49, 67–72. doi: https://doi.org/10.1016/j.aml.2015.04.015
- Krasnov, M. L., Kiselev, A. I., Makarenko, G. I. (2002). Obyknovennye differencial'nye uravneniya. Zadachi i primery s podrobnymi resheniyami. Moscow: Editorial URSS, 256.
- Puzyr, R., Savelov, D., Argat, R., Chernish, A. (2015). Distribution analysis of stresses across the stretching edge of die body and bending radius of deforming roll during profiling and drawing of cylindrical workpiece. Metallurgical and Mining Industry, 1, 27–32.
- Kurpe, O., Kukhar, V., Puzyr, R., Burko, V., Balalayeva, E., Klimov, E. (2020). Electric Motors Power Modes at Synchronization of Roughing Rolling Stands of Hot Strip Mill. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240818
- Haikova, T., Puzyr, R., Savelov, D., Dragobetsky, V., Argat, R., Sivak, R. (2020). The Research of the Morphology and Mechanical Characteristics of Electric Bimetallic Contacts. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240847
- Markov, O. E., Aliiev, I. S., Aliieva, L. I., Hrudkina, N. S. (2020). Computerized and physical modeling of upsetting operation by combined dies. Journal of Chemical Technology and Metallurgy, 55 (3), 640–648.
- Hrudkina, N. (2021). Process modeling of sequential radial-direct extrusion using curved triangular kinematic module. FME Transactions, 49 (1), 56–63. doi: https://doi.org/10.5937/fme2101056h
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ruslan Puzyr, Viktor Shchetynin, Viktor Vorobyov, Alexandr Salenko, Roman Arhat, Tetiana Haikova, Serhii Yakhin, Volodymyr Muravlov, Yuliia Skoriak, Igor Negrebetskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.