Improving the technology for manufacturing hollow cylindrical parts for vehicles by refining technological estimation dependences

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.244241

Keywords:

technological process, matrix, drawing, plastic deformation, flat workpiece, rounding radius, meridional stresses

Abstract

This paper shows that the technological preparation of production accounts for 20‒70 % of the total labor intensity of technical preparation. An important role belongs to the applied programs of finite-element modeling. However, such software packages often cannot be purchased by small-scale industrial enterprises for various reasons. Therefore, special empirical and analytical calculation models are used, which have proved to be quite effective in typical metal processing processes. Drawing a cylindrical hollow part was used as an example of the improved analytical dependence to calculate meridional tensile stresses. Existing analytical models of the process accounted for the bending moment through additional stresses. However, this approach only roughly described the deformation process. It was possible to refine the existing analytical dependences by introducing a term into the differential equilibrium equations that takes into consideration the bending moment that acts in the meridional direction when a workpiece passes the rounding on the matrix edge. Analysis of the obtained expression revealed that the bending of a workpiece gives rise to the stretching meridional stresses, which depend on the ratio of the squares of the thickness of the workpiece and the radius of the matrix rounding. The results of the estimation data from the numerical and theoretical models coincided for small values of the radius of the matrix rounding of 1‒2 mm, which confirms the adequacy of the analytical solution. In the numerical model, there is an extreme point where the tensile stresses have a minimum and, after it, begin to increase; this corresponds to the matrix rounding radius of 5 mm

Author Biographies

Ruslan Puzyr, College of Kremenchuk National University named after Mikhailo Ostrogradskiy

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

Viktor Shchetynin, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Professor

Department of Mechanical Engineering

Viktor Vorobyov, Kremenchuk Mykhailo Ostrohradskyi National University

Doctor of Technical Sciences, Professor

Department of Mechanical Engineering

Alexandr Salenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Professor

Department of Machine Design

Roman Arhat, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Mechanical Engineering

Tetiana Haikova, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Transport Technologies

Serhii Yakhin, Poltava State Agrarian University

PhD, Associate Professor

Department of Industrial Engineering

Volodymyr Muravlov, Poltava State Agrarian University

PhD, Associate Professor

Department of Industrial Engineering

Yuliia Skoriak, Poltava State Agrarian University

Assistant

Department of Industrial Engineering

Igor Negrebetskyi, Poltava State Agrarian University

Senior Lecturer

Department of Industrial Engineering

References

  1. Rojek, I. (2016). Technological process planning by the use of neural networks. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 31 (1), 1–15. doi: https://doi.org/10.1017/s0890060416000147
  2. Dima, I. C., Grabara, J. (2013). The Constructive and Technological Preparation of Production. Industrial Production Management in Flexible Manufacturing Systems, 68–109. doi: https://doi.org/10.4018/978-1-4666-2818-2.ch003
  3. Puzyr, R., Kukhar, V., Maslov, A., Shchipkovsky, Y. (2018). The Development of the Method for the Calculation of the Shaping Force in the Production of Vehicle Wheel Rims. International Journal of Engineering & Technology, 7 (4.3), 30. doi: https://doi.org/10.14419/ijet.v7i4.3.20128
  4. Khrustaleva, I. N., Lyubomudrov, S. A., Romanov, P. I. (2018) Automation of technological preparation of production in single-unit and small-batch manufacturing. St. Petersburg polytechnic university journal of engineering science and technology, 24 (01), 113–121. doi: https://doi.org/10.18721/JEST.240111
  5. Puzyr, R., Klimov, E., Chernish, A., Chernenko, S., Sira, Y. (2021). The Optimal Conditions for Adding Strain to the Deformation Zone During the Expansion of Automobile Pipe Adapters. Advances in Design, Simulation and Manufacturing IV, 104–113. doi: https://doi.org/10.1007/978-3-030-77719-7_11
  6. Tipner, L. M., Ishakova, N. R., Yeltsin, B. N. (2019). Problems of organization in conditions of unit and small batch production. Journal of Economy and Business, 5-3, 97–102. doi: https://doi.org/10.24411/2411-0450-2019-10733
  7. Prasad, N. (2012). Small-Scale Activities and Productivity Divide. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.2323421
  8. Sigmund, O., Maute, K. (2013). Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 48 (6), 1031–1055. doi: https://doi.org/10.1007/s00158-013-0978-6
  9. Safarov, D. T., Fedorov, K. A., Ilyasova, A. I. (2016). Algorithms development of making special techniques in APQP manufacturing process of automotive components. IOP Conference Series: Materials Science and Engineering, 134, 012036. doi: https://doi.org/10.1088/1757-899x/134/1/012036
  10. Puzyr, R. H., Shchetynin, V. T., Arhat, R. H., Sira, Y. B., Muravlov, V. V., Kravchenko, S. I. (2021). Numerical modeling of pipe parts of agricultural machinery expansion by stepped punches. IOP Conference Series: Materials Science and Engineering, 1018, 012013. doi: https://doi.org/10.1088/1757-899x/1018/1/012013
  11. Puzyr, R., Markov, O., Savielov, D., Chernysh, A., Sira, Y. (2021). Finite-Element Simulation of the Process of the Tubular Workpiece Expansion in the Manufacture of Automotive Parts. Advanced Manufacturing Processes II, 433–442. doi: https://doi.org/10.1007/978-3-030-68014-5_43
  12. Salenko, Y., Puzyr, R., Shevchenko, O., Kulynych, V., Pedun, O. (2020). Numerical Simulation of Local Plastic Deformations of a Cylindrical Workpiece of a Steel Wheel Rim. Lecture Notes in Mechanical Engineering, 442–451. doi: https://doi.org/10.1007/978-3-030-50794-7_43
  13. Haikova, T., Puzyr, R., Dragobetsky, V., Symonova, A., Vakylenko, R. (2020). Finite-Element Model of Bimetal Billet Strain Obtaining Box-Shaped Parts by Means of Drawing. Advances in Design, Simulation and Manufacturing II, 85–94. doi: https://doi.org/10.1007/978-3-030-22365-6_9
  14. Markov, O., Gerasimenko, O., Khvashchynskyi, A., Zhytnikov, R., Puzyr, R. (2019). Modeling the techological process of pipe forging without a mandrel. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 42–48. doi: https://doi.org/10.15587/1729-4061.2019.167077
  15. Popov, E. A. (1977). Osnovy teorii listovoy shtampovki. Moscow: Mashinostroenie, 278.
  16. Wang, X., Cao, J. (2000). An Analytical Prediction of Flange Wrinkling in Sheet Metal Forming. Journal of Manufacturing Processes, 2 (2), 100–107. doi: https://doi.org/10.1016/s1526-6125(00)70017-x
  17. Yakovlev, S. S., Remnev, K. S., Kalashnikov, A. E. (2012). Poterya ustoychivosti flanca anizotropnoy zagotovki pri vytyazhke osesimmetrichnyh detaley. Obrabotka materialov davleniem, 1 (30), 156–163.
  18. Romanovskiy, V. P. (1979). Spravochnik po holodnoy shtampovke. Leningrad: Mashinostroenie, 520.
  19. Arhat, R., Puzyr, R., Shchetynin, V., Moroz, M. (2021). The Manufacture of Cylindrical Parts by Drawing Using a Telescopic Punch. Advanced Manufacturing Processes II, 363–372. doi: https://doi.org/10.1007/978-3-030-68014-5_36
  20. Zheng, K., Politis, D. J., Wang, L., Lin, J. (2018). A review on forming techniques for manufacturing lightweight complex – shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 1 (2), 55–80. doi: https://doi.org/10.1016/j.ijlmm.2018.03.006
  21. Lee, E.-H., Stoughton, T. B., Yoon, J. W. (2017). A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. International Journal of Plasticity, 99, 120–143. doi: https://doi.org/10.1016/j.ijplas.2017.08.007
  22. Stoughton, T. B. (2002). A non-associated flow rule for sheet metal forming. International Journal of Plasticity, 18 (5-6), 687–714. doi: https://doi.org/10.1016/s0749-6419(01)00053-5
  23. Liu, X., Fakir, O. E., Meng, L., Sun, X., Li, X., Wang, L. (2018). Effects of lubricant on the IHTC during the hot stamping of AA6082 aluminium alloy: Experimental and modelling studies. Journal of Materials Processing Technology, 255, 175–183. doi: https://doi.org/10.1016/j.jmatprotec.2017.12.013
  24. Hartl, C. (2005). Research and advances in fundamentals and industrial applications of hydroforming. Journal of Materials Processing Technology, 167 (2-3), 383–392. doi: https://doi.org/10.1016/j.jmatprotec.2005.06.035
  25. G.-Romeu, M. L., de Ciurana, Q. (2004). Design and Manufacturing Assistance Tool for Drawing Sheet Metal Parts. Cooperative Design, Visualization, and Engineering, 123–132. doi: https://doi.org/10.1007/978-3-540-30103-5_14
  26. Araghi, B. T., Manco, G. L., Bambach, M., Hirt, G. (2009). Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming. CIRP Annals, 58 (1), 225–228. doi: https://doi.org/10.1016/j.cirp.2009.03.101
  27. Zein, H., El-Sherbiny, M., Abd-Rabou, M., El Shazly, M. (2013). Effect of Die Design Parameters on Thinning of Sheet Metal in the Deep Drawing Process. American Journal of Mechanical Engineering, 1 (2), 20–29. doi: https://doi.org/10.12691/ajme-1-2-1
  28. Vladimirov, I. N., Pietryga, M. P., Reese, S. (2010). Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. International Journal of Plasticity, 26 (5), 659–687. doi: https://doi.org/10.1016/j.ijplas.2009.09.008
  29. Gali, O. A., Riahi, A. R., Alpas, A. T. (2013). The tribological behaviour of AA5083 alloy plastically deformed at warm forming temperatures. Wear, 302 (1-2), 1257–1267. doi: https://doi.org/10.1016/j.wear.2012.12.048
  30. Shi, Z., Wang, L., Mohamed, M., Balint, D. S., Lin, J., Stanton, M. et. al. (2017). A new design of friction test rig and determination of friction coefficient when warm forming an aluminium alloy. Procedia Engineering, 207, 2274–2279. doi: https://doi.org/10.1016/j.proeng.2017.10.994
  31. Afshin, E., Kadkhodayan, M. (2015). An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes. Materials & Design, 87, 25–35. doi: https://doi.org/10.1016/j.matdes.2015.07.061
  32. Khandeparkar, T., Liewald, M. (2008). Hydromechanical deep drawing of cups with stepped geometries. Journal of Materials Processing Technology, 202 (1-3), 246–254. doi: https://doi.org/10.1016/j.jmatprotec.2007.08.072
  33. Heftrich, C., Steinheimer, R., Engel, B. (2018). Rotary-draw-bending using tools with reduced geometries. Procedia Manufacturing, 15, 804–811. doi: https://doi.org/10.1016/j.promfg.2018.07.410
  34. Puzyr, R., Haikova, T., Majerník, J., Karkova, M., Kmec, J. (2018). Experimental Study of the Process of Radial Rotation Profiling of Wheel Rims Resulting in Formation and Technological Flattening of the Corrugations. Manufacturing Technology, 18 (1), 106–111. doi: https://doi.org/10.21062/ujep/61.2018/a/1213-2489/mt/18/1/106
  35. Slater, R. (1977). Engineering and Plasticity: Theory and Application to Metal Forming Processes. London: Macmillan, 432.
  36. Agarwal, R. P., Grace, S. R., O’Regan, D. (2002). Oscillation and Nonoscillation of Linear Ordinary Differential Equations. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, 13–92. doi: https://doi.org/10.1007/978-94-017-2515-6_2
  37. Il'yushin, A. A. (1948). Plastichnost'. Moscow-Leningrad: Gostehizdat, 376.
  38. Volmir, A. (1967). Ustoychivost' deformiruemyh sistem. Moscow: Nauka, 984.
  39. Taber, L. A. (1988). On a theory for large elastic deformation of shells of revolution including torsion and thick-shell effects. International Journal of Solids and Structures, 24 (9), 973–985. doi: https://doi.org/10.1016/0020-7683(88)90045-5
  40. Maslov, A., Batsaikhan, J., Puzyr, R., Salenko, Y. (2018). The Determination of the Parameters of a Vibration Machinef the Internal Compaction of Concrete Mixtures. International Journal of Engineering & Technology, 7 (4.3), 12. doi: https://doi.org/10.14419/ijet.v7i4.3.19545
  41. Prager, V. (1955). Probleme der plastizitätstheorie. Birkhäuser. doi: https://doi.org/10.1007/978-3-0348-6928-7
  42. Puzyr, R., Savelov, D., Shchetynin, V., Levchenko, R., Haikova, T., Kravchenko, S. et. al. (2018). Development of a method to determine deformations in the manufacture of a vehicle wheel rim. Eastern-European Journal of Enterprise Technologies, 4 (1 (94)), 55–60. doi: https://doi.org/10.15587/1729-4061.2018.139534
  43. Haikova, T. V., Puzyr, R. H., Levchenko, R. V. (2020). Experimental Studies on the Stress-Strain State under Drawing Aluminum–Copper Bimetal Parts Rectangular in Plan. Russian Journal of Non-Ferrous Metals, 61 (4), 404–412. doi: https://doi.org/10.3103/s1067821220040033
  44. Arhat, R., Puzyr, R., Shchetynin, V., Puzyr, V., Haikova, T. (2021). The Contact Pressure in Drawing Parts Without Clamping the Workpiece Flange. Advances in Design, Simulation and Manufacturing IV, 12–20. doi: https://doi.org/10.1007/978-3-030-77719-7_2
  45. Neto, D. M., Oliveira, M. C., Alves, J. L., Menezes, L. F. (2014). Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation. Materials & Design, 60, 368–379. doi: https://doi.org/10.1016/j.matdes.2014.04.008
  46. Yoon, J. W., Dick, R. E., Barlat, F. (2011). A new analytical theory for earing generated from anisotropic plasticity. International Journal of Plasticity, 27 (8), 1165–1184. doi: https://doi.org/10.1016/j.ijplas.2011.01.002
  47. Sosenushkin, E. N., Yanovskaya, E. A., Sosenushkin, A. E., Emel’yanov, V. V. (2015). Mechanics of nonmonotonic plastic deformation. Russian Engineering Research, 35 (12), 902–906. doi: https://doi.org/10.3103/s1068798x15120199
  48. Van der Put, M., Singer, M. F. (2003). Galois Theory of Linear Differential Equations. Grundlehren Der Mathematischen Wissenschaften. doi: https://doi.org/10.1007/978-3-642-55750-7
  49. Barrett, J. H. (1969). Oscillation theory of ordinary linear differential equations. Advances in Mathematics, 3 (4), 415–509. doi: https://doi.org/10.1016/0001-8708(69)90008-5
  50. Džurina, J., Baculíková, B., Jadlovská, I. (2015). Kneser solutions of fourth-order trinomial delay differential equations. Applied Mathematics Letters, 49, 67–72. doi: https://doi.org/10.1016/j.aml.2015.04.015
  51. Krasnov, M. L., Kiselev, A. I., Makarenko, G. I. (2002). Obyknovennye differencial'nye uravneniya. Zadachi i primery s podrobnymi resheniyami. Moscow: Editorial URSS, 256.
  52. Puzyr, R., Savelov, D., Argat, R., Chernish, A. (2015). Distribution analysis of stresses across the stretching edge of die body and bending radius of deforming roll during profiling and drawing of cylindrical workpiece. Metallurgical and Mining Industry, 1, 27–32.
  53. Kurpe, O., Kukhar, V., Puzyr, R., Burko, V., Balalayeva, E., Klimov, E. (2020). Electric Motors Power Modes at Synchronization of Roughing Rolling Stands of Hot Strip Mill. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240818
  54. Haikova, T., Puzyr, R., Savelov, D., Dragobetsky, V., Argat, R., Sivak, R. (2020). The Research of the Morphology and Mechanical Characteristics of Electric Bimetallic Contacts. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240847
  55. Markov, O. E., Aliiev, I. S., Aliieva, L. I., Hrudkina, N. S. (2020). Computerized and physical modeling of upsetting operation by combined dies. Journal of Chemical Technology and Metallurgy, 55 (3), 640–648.
  56. Hrudkina, N. (2021). Process modeling of sequential radial-direct extrusion using curved triangular kinematic module. FME Transactions, 49 (1), 56–63. doi: https://doi.org/10.5937/fme2101056h

Downloads

Published

2021-12-29

How to Cite

Puzyr, R., Shchetynin, V., Vorobyov, V., Salenko, A., Arhat, R., Haikova, T., Yakhin, S., Muravlov, V., Skoriak, Y., & Negrebetskyi, I. (2021). Improving the technology for manufacturing hollow cylindrical parts for vehicles by refining technological estimation dependences . Eastern-European Journal of Enterprise Technologies, 6(1 (114), 56–64. https://doi.org/10.15587/1729-4061.2021.244241

Issue

Section

Engineering technological systems