Investigating errors when forecasting processes with uncertain dynamics and observation noise by the self-adjusting brown's zero-order model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.244623

Keywords:

forecasting errors, self-adjusting Brown's zero-order model, process dynamics uncertainty

Abstract

This paper reports a study into the errors of process forecasting under the conditions of uncertainty in the dynamics and observation noise using a self-adjusting Brown's zero-order model. The dynamics test models have been built for predicted processes and observation noises, which make it possible to investigate forecasting errors for the self-adjusting and adaptive models. The test process dynamics were determined in the form of a rectangular video pulse with a fixed unit amplitude, a radio pulse of the harmonic process with an amplitude attenuated exponentially, as well as a video pulse with amplitude increasing exponentially. As a model of observation noise, an additive discrete Gaussian process with zero mean and variable value of the mean square deviation was considered. It was established that for small values of the mean square deviation of observation noise, a self-adjusting model under the conditions of dynamics uncertainty produces a smaller error in the process forecast. For the test jump-like dynamics of the process, the variance of the forecast error was less than 1 %. At the same time, for the adaptive model, with an adaptation parameter from the classical and beyond-the-limit sets, the variance of the error was about 20 % and 5 %, respectively. With significant observation noises, the variance of the error in the forecast of the test process dynamics for the self-adjusting and adaptive models with a parameter from the classical set was in the range from 1 % to 20 %. However, for the adaptive model, with a parameter from the beyond-the-limit set, the variance of the prediction error was close to 100 % for all test models. It was established that with an increase in the mean square deviation of observation noise, there is greater masking of the predicted test process dynamics, leading to an increase in the variance of the forecast error when using a self-adjusting model. This is the price for predicting processes with uncertain dynamics and observation noises.

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Senior Researcher

Research Center

Mikhail Samoilov, National University of Civil Defence of Ukraine

Adjunct

Research Center

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Ecological Safety and Environmental Education

Yurii Kulbachko, Oles Honchar Dnipro National University

Doctor of Biology Sciences, Professor

Department of Ecology

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Oleksii Roianov, National University of Civil Defence of Ukraine

PhD

Department of Fire and Technological Safety of Facilities and Technologies

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD, Associate Professor

Department of Physical Geography and Geology

Ivetta Krivitska, V. N. Karazin Kharkiv National University

PhD

Department of Ecological Safety and Environmental Education

Valentyna Ivanova, Melitopol State Pedagogical University

Senior Lecturer

Department of Physical Geography and Geology

References

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
  2. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  3. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
  4. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
  5. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
  6. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
  7. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  8. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
  9. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
  10. Lukashin, Yu. P. (2003). Adaptivnye metody kratkosrochnogo prognozirovaniya vremennykh ryadov. Moscow: Finansy i statistika, 416.
  11. Brown, R. G. (2004). Smoothing, forecasting and prediction of discrete time series. Dover Publications, 480.
  12. Chetyrkin, E. M. (1977). Statisticheskie metody prognozirovaniya. Moscow: Statistika, 200.
  13. Lugachev, M. I., Lyapuncov, Yu. P. (1999). Metody social'no-ekonomicheskogo prognozirovaniya. Moscow: TEIS, 160.
  14. Svetun'kov, S. G. (2002). O rasshirenii granic primeneniya metoda Brauna. Izvestiya SPGUEF, 3, 94–107.
  15. Vartanyan, V. M., Romanenkov, Yu. A., Kononenko, A. V. (2005). Parametricheskiy sintez prognoznoy modeli eksponencial'nogo sglazhivaniya. Vestnik NTU «KhPI», 59, 9–16. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/28135/1/vestnik_KhPI_2005_59_Vartanyan_Parametricheskiy.pdf
  16. Tebueva, F., Streblianskaia, N. (2016). Adaptive method for predicting short time series of natural processes. Sovremennaya nauka: aktual'nye problemy teorii i praktiki, 6, 83–87. Available at: http://nauteh-journal.ru/files/eb917d86-88f4-4395-b12c-08b45ff3fbbb
  17. Svetun'kov, I. S. (2010). Samoobuchayuschayasya model' kratkosrochnogo prognozirovaniya social'no-ekonomicheskoy dinamiki. Modeli ocenki, analiza i prognozirovaniya social'no-ekonomicheskikh sistem. Kharkiv: INZhEK, 11–32. Available at: https://publications.hse.ru/mirror/pubs/share/folder/q1zrwhrj6z/direct/84096936.pdf
  18. Koshmarov, Yu. A., Puzach, S. V., Andreev, V. V. (2012). Prognozirovanie opasnykh faktorov pozhara v pomeschenii. Moscow: AGPS MCHS Rossii, 126.
  19. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  20. Webber,, C. L., Ioana, C., Marwan, N. (Eds.). (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  21. Ahn, C.-S., Kim J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117 (12), 185–196. doi: https://doi.org/10.2495/safe110171
  22. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  23. Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: https://doi.org/10.1007/s10694-011-0230-0
  24. Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
  25. Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. Journal of Chongqing University, 28, 122.
  26. ndronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  27. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  28. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
  29. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: https://doi.org/10.1002/9781118032428
  30. Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL, 1–7. Available at: https://hal.archives-ouvertes.fr/hal-01303330
  31. Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, Amazon, 655.
  32. Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
  33. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  34. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  35. Sinaga, H., Irawati, N. (2020). A Medical Disposable Supply Demand Forecasting By Moving Average And Exponential Smoothing Method. Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia. doi: https://doi.org/10.4108/eai.24-1-2018.2292378
  36. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  37. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  38. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  39. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Biryukov, I. et. al. (2021). Devising a self-adjusting zero-order Brown’s model for predicting irreversible processes and phenomena. Eastern-European Journal of Enterprise Technologies, 5 (10 (113), 40–47. doi: https://doi.org/10.15587/1729-4061.2021.241474
  40. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et. al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555

Downloads

Published

2021-12-29

How to Cite

Pospelov, B., Rybka, E., Samoilov, M., Krainiukov, O., Kulbachko, Y., Bezuhla, Y., Roianov, O., Hryshko, S., Krivitska, I., & Ivanova, V. (2021). Investigating errors when forecasting processes with uncertain dynamics and observation noise by the self-adjusting brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 6(9 (114), 47–53. https://doi.org/10.15587/1729-4061.2021.244623

Issue

Section

Information and controlling system