Design of an information-measuring system for monitoring deformation and displacement of rock massif layers based on fiber-optic sensors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.244897

Keywords:

optical fiber, rock displacement, roofing, mining workings, fiber-optic sensors

Abstract

This paper reports a study into designing an information-measuring system that could be used in coal mines that are dangerous in terms of the explosion of coal dust and methane gas. The results of reviewing technical advancements in the field of fiber-optic system development are given. To solve the set task, prototypes of a fiber-optic sensor of a new type and a hardware-software complex were constructed. The research aims to improve the safety of workers at coal enterprises. The result of the theoretical research has established that additional losses related to a micro bending should be taken into consideration while accounting for the effect of photoelasticity. The fundamental difference between the idea reported here and existing analogs is the development of a hardware-software complex capable of working with a single-mode optical fiber of great length with a significant noise level. The data processing unit is equipped with a television matrix and can analyze changes in the pixels of a light spot. The proposed system is quasi-distributed; it controls individual points within a rock massif. The designed hardware-software system provides high noise immunity of measuring channels when the external temperature changes. The research results helped develop an information-measuring system for monitoring the deformation and displacement of rock massif layers based on fiber-optic sensors, capable of operating in an explosive environment. The system makes it possible to control several layers located in the roof of the workings, while the fiber-optic sensor may contain two or three sensitive elements that are connected to different channels. With a sharp fluctuation in pressure and an increase in the displacement parameter, the system triggers a warning signal about the danger.

Author Biographies

Vyacheslav Yugay, Karaganda Technical University

PhD, Head of Department

Department of «The technology of communication systems»

Ali Mekhtiyev, S. Seifullin Kazakh Agro Technical University

PhD, Professor

Department of Electrical Equipment Operation

Yelena Neshina, Karaganda Technical University

Master, Head of Department

Department of Power Systems

Bakhytkul Aubakirova, M. Kozybaev North-Kazakhstan University

Master, Senior Lecturer

Department "Construction and Design"

Raushan Aimagambetova, Republic State Enterprise «Kazakhstan Institute of Standardization and Metrology» of the Committee of Technical Regulation and Metrology of the Ministry of Trade and Integration of the Republic of Kazakhstan

Master, Chief Specialist

Department of Strategic Development and Science

Aigul Kozhas, Karaganda Buketov University

PhD, Associate Professor

Department of "Transport and Logistics Systems"

Aliya Alkina, Karaganda Technical University

Master, Senior Lecturer

Department of Information Technologies and Security

Madiyar Musagazhinov, S. Seifullin Kazakh Agro Technical University

PhD Student

Departament of Electrical Equipment Operation

Alexandr Kovtun, Military Engineering Institute of Radio Electronics and Communications

Master, Associate Professor

Department of Special Disciplines

References

  1. Liu, X., Wang, C., Liu, T., Wei, Y., Lv, J. (2009). Fiber Grating Water pressure sensor and system for mine. ACTA Photonica Sinica, 38, 112–114. Available at: https://www.researchgate.net/publication/292872640_Fiber_grating_water_pressure_sensor_and_system_for_mine
  2. Kumar, A., Kumar, D., Singh, U. K., Gupta, P. S., Shankar, G. (2011). Optimizing fibre optics for coal mine automation. International Journal of Control and Automation, 4 (3), 19–30. Available at: http://article.nadiapub.com/IJCA/vol4_no3/2.pdf
  3. Naruse, H., Uehara, H., Deguchi, T., Fujihashi, K., Onishi, M., Espinoza, R. et. al. (2007). Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine. Measurement Science and Technology, 18 (10), 3202–3210. doi: http://doi.org/10.1088/0957-0233/18/10/s23
  4. Chotchaev, Kh. O. (2016). Control of the mountainous area stress-strained state by the sound ranging and geophysical methods. Geologiya i geofizika yuga Rossii, 3, 129–140. Available at: https://www.elibrary.ru/item.asp?id=27170260
  5. Buimistryuk, G. Ya. (2011). Printsipy postroeniya intellektualnykh volokonno-opticheskikh datchikov. Foton-Ekspress, 6 (43), 38–39.
  6. Buimistryuk, G. (2013). Volokonno-opticheskie datchiki dlya ekstremalnykh uslovii. Control engineering Rossiya, 3 (45), 34–40. Available at: https://controleng.ru/wp-content/uploads/ce_46_p34_volokonno-opticheskie_datchik_dlya_ekstremalnykh_uslovii.pdf
  7. Kim, S., Park, Y., Park, S., Cho, K., Cho, J.-R. (2015). A Sensor-Type PC Strand with an Embedded FBG Sensor for Monitoring Prestress Forces. Sensors, 15 (1), 1060–1070. doi: http://doi.org/10.3390/s150101060
  8. Liu, T., Wei, Y., Guangdong Song, Li, Y., Jinyu Wang, Yanong Ning, Yicheng Lu. (2013). Advances of optical fiber sensors for coal mine safety monitoring applications. 2013 International Conference on Microwave and Photonics (ICMAP), 102–111. doi: http://doi.org/10.1109/icmap.2013.6733455
  9. Zhao, Y., Zhang, N., Si, G. (2016). A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining. Sensors, 16 (10), 1759. doi: http://doi.org/10.3390/s16101759
  10. Volchikhin, V. I., Murashkina, T. I. (2001). Problemy sozdaniya volokonno-opticheskikh datchikov. Datchiki i sistemy. Izmereniya, kontrol, avtomatizatsiya, 7, 54–58. Available at: http://naukarus.com/problemy-sozdaniya-volokonno-opticheskih-datchikov
  11. Liu, J., Chai, J., Wei, S., Li, Y., Zhu, L., Qiu, B. (2008). Theoretical and experimental study on fiber Bragg grating sensing of rock strata settlement deformation. Journal of Coal Science and Engineering (China), 14 (3), 394–398. doi: http://doi.org/10.1007/s12404-008-0087-0
  12. Kamenev, O. T., Kulchin, Yu. N., Petrov, Yu. S., Khizhnyak, R. V. (2014). Primenenie volokonno-opticheskogo interferometra Makha−Tsendera dlya sozdaniya dlinnobazovykh deformometrov. Pisma v ZHTF, 40 (3), 49–56. Available at: http://journals.ioffe.ru/articles/viewPDF/27305
  13. Kulchin, Yu. N., Kamenev, O. T., Petrov, Yu. S., Kolchinskii, V. A. (2016). Volokonno-opticheskie interferometricheskie priemniki slabykh seismosignalov. Vestnik DVO RAN, 4, 56–59.
  14. Shumkova, D. B., Levchenko, A. E. (2011). Spetsialnye volokonnye svetovody. Perm: Izd-vo Perm. nats. issled. politekhn.un-ta, 178. Available at: https://pstu.ru/files/file/FPMM/of/shumkova_specialnye_volokonnye_svetovody.pdf
  15. Buimistryuk, G. Ya. (2004). Informatsionno – izmeritelnaya tekhnika i tekhnologiya na osnove volokonno-opticheskikh datchikov i sistem. Saint Petersburg: IVA, GROTS Minatoma, 198. Available at: https://www.twirpx.com/file/102146/
  16. Osório, J. H., Chesini, G., Serrão, V. A., Franco, M. A. R., Cordeiro, C. M. B. (2017). Simplifying the design of microstructured optical fibre pressure sensors. Scientific Reports, 7 (1). doi: http://doi.org/10.1038/s41598-017-03206-w
  17. Yurchenko, A. V., Mekhtiyev, A. D., Bulatbayev, F. N., Neshina, Y. G., Alkina, A. D. (2018). The Model of a Fiber-Optic Sensor for Monitoring Mechanical Stresses in Mine Workings. Russian Journal of Nondestructive Testing, 54 (7), 528–533. doi: http://doi.org/10.1134/s1061830918070094
  18. Mekhtiev, A. D., Yurchenko, A. V., Ozhigin, S. G., Neshina, E. G., Al’kina, A. D. (2021). Quasi-Distributed Fiber-Optic Monitoring System for Overlying Rock Mass Pressure on Roofs of Underground Excavations. Fyzyko-Tekhnycheskye Problemi Razrabotky Poleznikh Yskopaemikh, 2, 192–198. doi: http://doi.org/10.15372/ftprpi20210219
  19. Mekhtiyev, A. D., Yurchenko, A. V., Neshina, E. G., Alkina, A. D. (2020). Using G-652 Optical Fiber to Control Mountain Massifes of Coal Mines. Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics, 20 (1), 144–153. doi: http://doi.org/10.14529/ctcr200114

Downloads

Published

2021-12-21

How to Cite

Yugay, V., Mekhtiyev, A., Neshina, Y., Aubakirova, B., Aimagambetova, R., Kozhas, A., Alkina, A., Musagazhinov, M., & Kovtun, A. (2021). Design of an information-measuring system for monitoring deformation and displacement of rock massif layers based on fiber-optic sensors. Eastern-European Journal of Enterprise Technologies, 6(5 (114), 12–27. https://doi.org/10.15587/1729-4061.2021.244897

Issue

Section

Applied physics