Improved performance of corrugated metal gaskets in boiler’s piping system through multilayered coating
DOI:
https://doi.org/10.15587/1729-4061.2021.245360Keywords:
coating, nickel, copper, corrugated metal gaskets, performance, leakage, multilayered, boilerAbstract
The corrugated metal gasket is still in the early stages of development. However, gasket contact flanges with a high surface roughness (more than 3.5 µm) leak and require a lot of force to tighten. A nickel or copper-coated corrugated metal gasket was designed. A water pressure test was used to measure leaks, and the results revealed that nickel or copper-covered gaskets performed better. The effect of high temperature has not been explored in this study, which only reveals high pressure. The goal of this study is to use copper and nickel coatings to improve the performance of corrugated metal gaskets. Copper or nickel infiltrates the pipe flange's rough surface, preventing leaking. The purpose of this study is to investigate the performance of a coated corrugated metal gasket in a boiler system, which has high temperature and pressure. Corrugated metal gaskets were formed using a cold forming process. The gasket material was SUS304, which is copper or nickel-plated through electroplating. The gasket was installed in a series of pipes in the boiler that flows water at high temperature and pressure. The water leak was trickling on white paper that had been placed beneath the gasket. Even small water leaks are detected on white paper. The thermal camera can detect vapor leaks. The results of the studies reveal that the coated corrugated metal gasket's performance was improved, as seen by the reduction in leakage. At the highest pressure of 7 bar and the lowest tightening force of 40 kN, neither gasket leaked. This result is different from standard corrugated metal gaskets, where at the same pressure and temperature, steam and water leaks are observed. Both copper and nickel-plating types can be used to coat corrugated metal gaskets made of SUS304.
References
- Saeed, H. A., Izumi, S., Sakai, S., Haruyama, S., Nagawa, M., Noda, H. (2008). Development of New Metallic Gasket and its Optimum Design for Leakage Performance. Journal of Solid Mechanics and Materials Engineering, 2 (1), 105–114. doi: https://doi.org/10.1299/jmmp.2.105
- Nurhadiyanto, D., Choiron, M. A., Haruyama, S., Kaminishi, K. (2012). Optimization of new 25A-size metal gasket design based on contact width considering forming and contact stress effect. World Academy of Science, Engineering and Technology, 6 (3), 659–663. Available at: https://www.researchgate.net/publication/288864130_Optimization_of_New_25A-size_Metal_Gasket_Design_Based_on_Contact_Width_Considering_Forming_and_Contact_Stress_Effect
- Haruyama, S., Nurhadiyanto, D., Choiron, M. A., Kaminishi, K. (2013). Influence of surface roughness on leakage of new metal gasket. International Journal of Pressure Vessels and Piping, 111-112, 146–154. doi: https://doi.org/10.1016/j.ijpvp.2013.06.004
- Nurhadiyanto, D., Haruyama, S., Mujiyono, Sutopo, Ristadi, F. A. (2020). The performance of nickel and copper as coating materials for corrugated metal gaskets. Journal of Engineering Science and Technology, 15 (4), 2450–2463. Available at: https://jestec.taylors.edu.my/Vol%2015%20issue%204%20August%202020/15_4_23.pdf
- Haruyama, S., Choiron, M. A., Nurhadiyanto, D. (2019). Optimum Design of Laminated Corrugated Metal Gasket Using Computer Simulation. International Journal of Integrated Engineering, 11 (5). doi: https://doi.org/10.30880/ijie.2019.11.05.004
- Haruyama, S., Karohika, I. M. G., Sato, A., Nurhadiyanto, D., Kaminishi, K. (2016). Development of 25A-size three-layer metal gasket by using FEM simulation. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10 (3), 577–583. Available at: http://staffnew.uny.ac.id/upload/132161221/penelitian/Development-of-25A-Size-Three-Layer-Metal-Gasket-by-Using-FEM-Simulation.pdf
- Karohika, I. G. M., Haruyama, S., Kaminishi, K., Oktavianty, O., Nurhadiyanto, D. (2017). Analysis of contact width and contact stress of three-layer corrugated metal gasket. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11 (4), 870–879. Available at: http://staffnew.uny.ac.id/upload/132161221/penelitian/Analysis%20of%20Contact%20Width%20and%20Contact%20Stress%20of%20Three%20Layer%20Corrugated%20Metal%20Gasket_2017.pdf
- Nurhadiyanto, D., Mujiyono, Sutopo, Amri Ristadi, F. (2018). Simulation Analysis of 25A-Size Corrugated Metal Gasket Coated Copper to Increase Its Performance. IOP Conference Series: Materials Science and Engineering, 307, 012005. doi: https://doi.org/10.1088/1757-899x/307/1/012005
- Huang, C. A., Yang, S. W., Liu, Y. W., Lai, P. L. (2019). Effect of Cu and Ni Undercoatings on the Electrochemical Corrosion Behaviour of Cr–C-Coated Steel Samples in 0.1 M H2SO4 Solution with 1 g/L NaCl. Coatings, 9 (9), 531. doi: https://doi.org/10.3390/coatings9090531
- Zhou, H., Hu, X., Li, J. (2018). Corrosion behaviors and mechanism of electroless Ni-Cu-P/n-TiN composite coating. Journal of Central South University, 25 (6), 1350–1357. doi: https://doi.org/10.1007/s11771-018-3831-7
- Yuliarto Margen, S., Sulistyo, S., Nugroho, S., Setiawan Adi Nugroho, Y. (2018). Enhancement Surface Coating Stainless Steel And Copper Using Ultrasonic Batch. MATEC Web of Conferences, 159, 02051. doi: https://doi.org/10.1051/matecconf/201815902051
- Materials Data Book (2003). Cambridge University Engineering Department Available at: https://pdf4pro.com/view/materials-data-book-university-of-cambridge-5366e6.html
- Cambridge Engineering Selector software (CES 4.1) (2003). Granta Design Limited. Rustat.
- JIS B 2404. Dimensions of gaskets for use with pipe flanges (2006). Japanese Standards Association.
- JIS B 2220. Steel Pipe Flanges (2004). Japanese Standards Association.
- Gatea, S., Lu, B., Chen, J., Ou, H., McCartney, G. (2018). Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model. International Journal of Material Forming, 12 (4), 553–574. doi: https://doi.org/10.1007/s12289-018-1434-3
- Xu, L.-Z., Shen, W., Yan, R. (2019). Predictive and control models of the spring-back in thick hull plate forming. International Journal of Material Forming, 12 (4), 603–614. doi: https://doi.org/10.1007/s12289-018-1437-0
- Nurhadiyanto, D., Haruyama, S., Anon, M., Abbas, W. (2020). Electroplating process for copper coating of corrugated metal gaskets to increase performance. International Journal of Mechanical Engineering and Technology (IJMET), 11 (1), 73–83. doi: https://doi.org/10.34218/ijmet.11.1.2020.008
- Nurhadiyanto, D., Mujiyono, Abbas, W., Sutopo, Haruyama, S. (2021). SUS304 Material Coating with Nickel Through Electroplating. Advances in Mechanical Processing and Design, 515–522. doi: https://doi.org/10.1007/978-981-15-7779-6_46
- Nurhadiyanto, D., Amrullah, A. M., Mujiyono, Kurniawati, J. (2020). An Analysis on copper corrosion SUS304 corrugated metal gasket electroplating. Journal of Physics: Conference Series, 1700 (1), 012008. doi: https://doi.org/10.1088/1742-6596/1700/1/012008
- User’s manual FLIR Ex series. No. T559828. FLIR. Available at: https://docs.rs-online.com/9649/A700000006759356.pdf
- Puust, R., Kapelan, Z., Savic, D. A., Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7 (1), 25–45. doi: https://doi.org/10.1080/15730621003610878
- Penteado, C., Olivatti, Y., Lopes, G., Rodrigues, P., Filev, R., Aquino, P. T. (2018). Water leaks detection based on thermal images. 2018 IEEE International Smart Cities Conference (ISC2). doi: https://doi.org/10.1109/isc2.2018.8656938
- Etminanfar, M. R., Heydarzadeh Sohi, M. (2012). Hardness study of the pulse electrodeposited nanoscale multilayers of Cr-Ni. International Journal of Modern Physics: Conference Series, 05, 679–686. doi: https://doi.org/10.1142/s2010194512002620
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Didik Nurhadiyanto, Shigeyuki Haruyama, Mujiyono Mujiyono, Sutopo Sutopo, Yunaidi Yunaidi, Fredy Surahmanto, Moch Agus Choiron, Novian Indra Kusuma, Nur Chalid Fauzi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.