Determining the effective use of magnetite in lipid-magnetite suspensions
DOI:
https://doi.org/10.15587/1729-4061.2014.24539Keywords:
suspension, magnetite, monoacylglycerol, surface-active agent, stability, centrifugation, infrared spectroscopyAbstract
Biomagnetic liquids (suspensions) are a colloidal system, consisting of a disperse phase, usually magnetite (Fe3O4), surface-active agent (SAA), and disperse medium. Ultra-fine particles of magnetite with biologically-active compounds, immobilized on the surface (e.g., SAA) are of theoretical and practical interest for use in various biotechnologies.
Herewith, nanoparticles are investigated as both independent units, and complex organic- inorganic systems “mineral core - functional shell”. These studies are necessary because the structure and morphology of the nanoparticles depend on the functionality of their surface.
Biomagnetic liquid (suspension), based on the following components: oil - corn, soybean and sunflower; SAA - monoacylglycerol; magnetite is obtained in our paper. The stability of the suspension is studied by the centrifuge method. The optimum ratio of the lipid-magnetite suspension components - disperse medium (vegetable oil): disperse phase (magnetite): SAA (monoacylglycerol) = 49, 625 g (98, 255 wt. %): 0.35 g (0.7 wt. %): 0.025 g (0.045 wt.%) is determined.
Using the infrared spectroscopy method, issues of chemical compatibility of magnetite with the suspension components are investigated.
It has been found that there is a chemical interaction (chemisorption) between magnetite and SAA in the suspension. When adding monoacylglycerol to magnetite in the IR-spectrum of SAA there is a new absorption band in the region of the stretching vibrations of associated OH-group at 3375 cm-1, which can only be attributed to the interaction (“association”) of OH-groups of monoacylglycerol with magnetite (most likely by donor-acceptor mechanism). In addition, during the modification of magnetite by monoacylglycerol, the absorption band of OH-group shifts to the short-wave region 3003 cm-1 (3009 cm-1 in monoacylglycerol), and the bands of symmetric and asymmetric stretching vibrations of COO-group are clearer and shift to long- wave region by approximately 30 cm-1: νs = 1760 cm-1, νas = 1670 cm-1 (νs = 1730 cm-1, νas = 1640 cm-1 in monoacylglycerol), which may indicate the interaction between the COO-group and magnetite.
The importance of the obtained data is that they can be used in obtaining biomagnetic vegetable oil-based liquids. The developed suspensions contain magnetite. And considering the biocompatibility of magnetite with living organisms and its positive effects on the human body, suspensions can be used as food (dietary) additives in food products in order to enrich with digestible iron and create antianemic categories of food products (for treatment and prevention).References
- Милославський, Д. К. Мембраннi механiзми впливу магнiтотерапiї при “м’яких” формах артерiальної гiпертензiї [Текст] / Д. К. Милославський, О. В. Васильєва // Укр. кардiол. журнал. – 1996. – № 1. – С. 45–47.
- Брусенцов, Н. А. Физические и химические критерии ферромагнетиков для биомедицинских целей [Текст] / Н. А. Брусенцов, В. В. Гогосов, М. В. Лукашевич // Хим.-фарм. журнал. – 1996. – № 10. – С. 48–53.
- Цихановская, И. В. О перспективах использования магнетита в качестве биологически активных добавок [Текст] : тез. док. 2-ой межд. науч.-тех. конф. / И. В. Цихановская, Т. А. Оноприенко, В. А. Коваленко, В. И. Оноприенко // Химия и технология жиров. Перспективы развития масло-жировой отрасли. – Харьков, НИИ масел и жиров, 2009. – С. 53–54.
- Вольтер, Е. Р. Физико-химические аспекты применения магнитных жидкостей в экспериментальной медицине [Текст] : тр. IX межд. Плесской конф. / Е. Р. Вольтер, Н. Н. Глущенко // Конференция по магнитным жидкостям. — Иваново, ИГЭУ, 2000. — С. 349–351.
- Илюха, Н. Г. Технология производства и показатели качества пищевой добавки на основе магнетита [Текст] / Н. Г. Илюха, З. В. Барсова, В. А. Коваленко, И. В. Цихановская // Восточно-Европейский журнал передовых технологий. — 2010. — Т. 6, № 10 (48). — С. 32–35.
- Ілюха, М. Г. Нанохімічна технологія магнетиту [Текст] / М. Г. Ілюха, З. В. Барсова, І. В. Цихановська, В. П. Тімофеєва, І. О. Ведерникова // Хімічна промисловість України. — 2009. — № 5 (94). — С. 37–41.
- Tartaj, P. The preparation of magnetic nanoparticles for applications in biomedicine [Text] / P. Tartaj, M. Morales, S. Veintemilas-Verdaguer, T. Gonzalez-Carreno, C. J. Serna // J. Phys. D: Phys. — 2003. — Vol. 36, № 8. — P. 182–189.
- Pankhurst, Q. A. High-efficiency plasma surface modification of graphite-encapsulated magnetic nanoparticles using a pulsed par¬ticle explosion technique [Text] / Q. Pankhurst, J. Connolly, S. K. Jones, J. Dobson // J. Phys. D: Appl.Phys. —2003. — Vol. 36, № 6. — P. 167–173.
- Qiang, Y. The antibackterial activity of magnetic nanofluid:Fe3O4/oleic acid/cephaloporins core/shell/adsorption-shell proved ons aureus and E.coli and possible applications as drug delivery systems [Text] / Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer// J. Nanoparticle Research. — 2006. — Vol. 8, № 4. —P. 489–499.
- Gupta, А. К. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [Text] / A. K. Gupta, M. Gupta // J. Biomaterials. —2005. — Vol. 26, № 18. — P. 3995–4021.
- Cotica, L. F. Surface spin disorder effects in magnetite and poly(thiophene)-coated magnetite nanoparticles [Text] / L. F. Cotica, I. A. Santos, E. M. Girotto, E. V. Ferri, A. A. Coelho // J. Appl. Phys. — 2010. — Vol. 108, № 3. — P. 395–401.
- Chaubey, G. S. Synthesis and Stabilization of FeCo Nanoparticles [Text] / G. S. Chaubey, С. Barcena, N. Poudyal, C. Rong, J. Gao, S. Sun, J. P. Liu // J. Am. Chem. Soc. — 2007. — Vol. 129, № 5. — P. 7214–7215.
- Couto, G. G. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties [Text] / G. G. Couto, J. J. Klein, W. H. Schreiner, D. H. Mosca, A. J. A. Oliveira, A. J. G. Zarbin // Journal of Colloid and Interface Science. — 2007. — Vol. 311, № 6. — P. 461–468.
- Miloslavsky, D. C., Vasiliva, O. V. (1996). Membranni mehanizmi vplivu magnitoterapiї at «m’yakih» forms arterialnoї gipertenziї. Ukr. kardiol. Magazine. Kyiv, 1, 45–47.
- Brusentsov, N. A., Gogosov, V. V., Luka, M. V. (1996). Shevich Physical and chemical criteria ferrimagnetics for biomedical applications. Chem.farm. magazine. Kyiv, 1, 48–53.
- Tsykhanovska, I. V., Onoparienko, T. A., Kovalenko, V. A., Onoprienko, V. I. (2009). Prospects of using magnetite stve quality dietary supplements. Chemistry and technology of fats. Pers pektivy development oil-fat in¬dustry. Kharkiv Research Institute of oils and fats, 53–54.
- Voltaire, E. R., Gluschenko, N. N. (2000). Fiziko-chemical aspects of the application of magnetic fluids in experimental medicine. Plesskii magnetic fluids. Ivanovo, ISPU, 349–351.
- Ilyukha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsykhanovska, I. V. (2010). Tehnologiya production and quality indicators of food supplements based on magnetite. Eastern-European Journal of Enterprise Technologies, Vol. 6, № 10 (48), 32–35.
- Іlyuha, M. G., Autograph, Z. V., Tsykhanovska, І. V., Tіmofeiva, V. P., Vedernikova, І. O. (2009). Nanohіmіchna tehnologіya magnetite. Hіmіchna PROMIS-lovіst Ukrainy, 5 (94), 37–41.
- Tartaj, P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Phys, Vol. 36, № 8, 182–189.
- Pankhurst, Q., Connolly, J., Jones, S. K., Dobson, J. (2003). A High-efficiency plasma surface modification of graphite-encapsulated magnetic nanoparticles using a pulsed particle explosion technique. J. Phys. D: Appl.Phys, Vol. 36, № 6, 167–173.
- Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., Meyer, D. (2006). The antibackterial activity of magnetic nanofluid:Fe3O4/ oleic acid/cephaloporins core/shell/adsorption-shell proved ons aureus and E.coli and possible applications as drug delivery systems. J. Nanoparticle Research, Vol. 8, № 4, 489–499.
- Gupta, А. К., Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. J. Biomaterials, Vol. 26, № 18, 3995–4021.
- Cotica, L. F., Santos, I. A., Girotto, E. M., Ferri, E. V., Coelho, A. A. (2010). Surface spin disorder effects in magnetite and poly(thiophene)-coated magnetite nanoparticles. J. Appl. Phys, Vol. 108, № 3, 395–401.
- Chaubey, G. S., Barcena, С., Poudyal, N., Rong, C., Gao, J., Sun, S., Liu J. P. (2007). Synthesis and Stabilization of FeCo Nanoparticles. J. Am. Chem. Soc, Vol. 129, № 5, 7214–7215.
- Couto, G. G., Klein, J. J., Schreiner, W. H., Mosca, D. H., Oliveira, A. J. A., Zarbin A. J. G. (2007). Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties. Journal of Colloid and Interface Science, Vol. 311, № 6, 461–468.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Ірина Василівна Цихановська, Зоя Валеріївна Барсова, Олександр Валентинович Александров, Микола Григорович Ілюха
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.