Devising a method for improving the efficiency of artillery shooting based on the Markov model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.245854

Keywords:

artillery unit, firing efficiency, acoustic field of shot, Markov model, generalized criterion of effectiveness

Abstract

This paper reports a method for improving the firing efficiency of an artillery unit that results in enhanced effectiveness. Given the modern use of artillery for counter-battery warfare, the effectiveness of shooting is not enough assessed by accuracy only. It is also necessary to take into consideration and minimize the time spent by the unit in the firing position and the consumption of shells to hit the target.

It has been shown that in order to assess the effectiveness of an artillery shot due to the initial velocity of the projectile, the most rapid and simple means is to classify the quality of the shot by the acoustic field. A procedure for categorizing the shot has been improved by applying an automatic classifier with training based on a machine of support vectors with the least squares. It is established that the error in the classification of the effectiveness of the second shot does not exceed 0.05. The concept of the effectiveness of a single artillery shot was introduced. Under the conditions of intense shooting, there may be accidental disturbances in each shot due to the wear of the charging chamber of the gun, its barrel, and incomplete information about the powder charge. When firing involves disturbances, the firing of an artillery unit can be described by a model of a discrete Markov chain. Based on the Markov model, a method for improving the efficiency of artillery fire has been devised. The method is based on the identification of guns that produce ineffective shots. The fire control phase of the unit has been introduced. In the process of controlling the fire of the unit, such guns are excluded from further firing. A generalized criterion for the effectiveness of artillery firing of a unit, based on the convolution of criteria, has been introduced. It is shown that the devised method significantly improves the effectiveness of shooting according to the generalized criterion.

Author Biographies

Viktor Boltenkov, Naval Institute of the National University "Odessa Maritime Academy"

PhD, Associate Professor, Leading Researcher

Science Center

Olexander Brunetkin, Odessа Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Computer Technologies of Automation

Yevhenii Dobrynin, National University "Odessa Maritime Academy"

PhD, Researcher

Oksana Maksymova, Naval Institute of the National University "Odessa Maritime Academy"

PhD, Associate Professor, Leading Researcher

Science Center

Vitalii Kuzmenko, National University "Odessa Maritime Academy"

Researcher

Pavlo Gultsov, Postgraduate Student Department of Computer Technologies of Automation

Postgraduate Student

Department of Computer Technologies of Automation

Volodymyr Demydenko, Odessа Polytechnic National University

Postgraduate Student

Department of Computer Technologies of Automation

Olha Soloviova, Odessа Polytechnic National University

Postgraduate Student

Department of Computer Technologies of Automation

References

  1. Oprean, L.-G. (2020). Artillery from the Perspective of Firing Effects and Ensured Capabilities. Scientific Bulletin, 25 (2), 107–113. doi: https://doi.org/10.2478/bsaft-2020-0015
  2. Aliev, A. A., Bayramov, A. A., Sabziev, E. N. (2018). Effectiveness of artillery systems. Advanced Information Systems, 2 (3), 115–122. doi: https://doi.org/10.20998/2522-9052.2018.3.20
  3. Katsev, I. (2018). Evaluation method of the artillery’s effectiveness against unitary target. Security & Future, 2 (4), 196–198. Available at: https://stumejournals.com/journals/confsec/2018/4/196.full.pdf
  4. Moon, S.-H. (2021). Weapon effectiveness and the shapes of damage functions. Defence Technology, 17 (2), 617–632. doi: https://doi.org/10.1016/j.dt.2020.04.009
  5. Shim, Y., Atkinson, M. P. (2018). Analysis of artillery shoot-and-scoot tactics. Naval Research Logistics (NRL), 65 (3), 242–274. doi: https://doi.org/10.1002/nav.21803
  6. Schmitt, M. N. (2008). The Principle of Distinction and Weapon Systems on the Contemporary Battlefield. Connections: The Quarterly Journal, 07 (1), 46–56. doi: https://doi.org/10.11610/connections.07.1.03
  7. Temiz, Y. Z. (2016). Artillery survivability model. Monterey: Naval Postgraduate School, 98. Available at: https://calhoun.nps.edu/handle/10945/49399
  8. Pelykh, S. N., Maksimov, M. V., Nikolsky, M. V. (2014). A method for minimization of cladding failure parameter accumulation probability in VVER fuel elements. Problems of Atomic Science and Technology, 92 (4), 108–116. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/80362/15-Pelykh.pdf?sequence=1
  9. Washburn, A. R. (2002). Notes on Firing Theory. Naval Postgraduate School Monterey, 34. Available at: https://www.researchgate.net/publication/238621088_Notes_on_Firing_Theory
  10. Kochan, R., Kochan, O., Trembach, B., Kohut, U., Zawislak, S., Falat, P., Warwas, K. (2019). Theoretical Error of Bearing Method in Artillery Sound Ranging. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2019.8924450
  11. Petrenko, V. M., Liapa, M. M., Prykhodko, A. I. et. al. (2015). Zasoby pidhotovky ta upravlinnia vohnem artyleriyi. Sumy: Sumskyi derzhavnyi universytet, 458. Available at: https://essuir.sumdu.edu.ua/handle/123456789/40047
  12. Kondrat, V., Kostenko, O., Kornienko, O. (2018). The analysis optical-electronic means of investigation and the direction of their perfection for the purpose of increase of efficiency of fighting application armament and military equipment. Scientific Works of Kharkiv National Air Force University, 2 (56), 66–71. doi: https://doi.org/10.30748/zhups.2018.56.08
  13. Kryvosheiev, A. M., Prykhodko, A. I., Petrenko, V. M. (2014). Osnovy artyleriiskoi rozvidky. Sumy: Sumskyi derzhavnyi universytet, 393. Available at: https://essuir.sumdu.edu.ua/bitstream-download/123456789/34022/1/art_pozvidka.pdf
  14. Kratky, M., Minarik, V., Sustr, M., Ivan, J. (2020). Electronic Warfare Methods Combatting UAVs. Advances in Science, Technology and Engineering Systems Journal, 5 (6), 447–454. doi: https://doi.org/10.25046/aj050653
  15. Shuliakov, S., Bzot, V., Zhylin, Y., Shigimaga, N., Artemenko, A. (2020). Ways to improve the intelligence support of rocket troops and artillery combat use. Scientific Works of Kharkiv National Air Force University, 1 (63), 22–30. doi: https://doi.org/10.30748/zhups.2020.63.03
  16. Scanlon, M. V., Ludwig, W. D. (2010). Sensor and information fusion for improved hostile fire situational awareness. Unattended Ground, Sea, and Air Sensor Technologies and Applications XII. doi: https://doi.org/10.1117/12.850406
  17. Liu, Y. J., Shan, X. M., Yang, H. Y., Xu, G. X. (2013). Study on Data Fusion Technologies of Artillery Radar Decision System. Advanced Materials Research, 718-720, 1595–1598. doi: https://doi.org/10.4028/www.scientific.net/amr.718-720.1595
  18. Liang, G., Lv, G., Huang, X., Wang, L. (2020). Teaching Method Research of Practical Course of Certain Artillery Radar Equipment. 2020 International Conference on Artificial Intelligence and Education (ICAIE). doi: https://doi.org/10.1109/icaie50891.2020.00098
  19. Tan, J. Y., Lee, C. H., Chua, W. S. (2020). Operating and supporting three generations of weapon locating radars. DSTA Horizons, 58–65. Available at: https://www.dsta.gov.sg/docs/default-source/dsta-about/dh15202006_operating-and-supporting-three-generations-of-weapon-locating-radars.pdf
  20. Liapa, M. M., Makeiev, V. I., Petrenko, V. M. (2007). Perspektyvni metody ta zasoby balistychnoi pidhotovky strilby. Visnyk Sumskoho derzhavnoho universytetu. Seriya: Tekhnichni nauky, 3, 45–56.
  21. Prokopenko, V. V. (2012). Evaluation artillery fire effectiveness when using perspective ballistic station. Systemy ozbroiennia i viyskova tekhnika, 4, 52–60. Available at: http://nbuv.gov.ua/UJRN/soivt_2012_4_13
  22. Dobrynin, Y., Maksymov, M., Boltenkov, V. (2020). Development of a method for determining the wear of artillery barrels by acoustic fields of shots. Eastern-European Journal of Enterprise Technologies, 3 (5 (105)), 6–18. doi: https://doi.org/10.15587/1729-4061.2020.206114
  23. Dobrynin, Y., Volkov, V., Maksymov, M., Boltenkov, V. (2020). Development of physical models for the formation of acoustic waves at artillery shots and study of the possibility of separate registration of waves of various types. Eastern-European Journal of Enterprise Technologies, 4 (5 (106)), 6–15. doi: https://doi.org/10.15587/1729-4061.2020.209847
  24. Dobrynin, Ye. V., Boltenkov, V. O., Maksymov, M. V. (2020). Information Technology for Automated Assessment of the Artillery Barrels Wear Based on SVM Classifier. Applied Aspects of Information Technology, 3 (3), 117–134. Available at: https://elibrary.ru/item.asp?id=44052959
  25. Kosarev, V. V., Pushin, V. G., Ponomarev, A. I., Horoshilov, V. A. (2003). Artilleriyskoe oruzhie VMF. Sankt-Peterburg: Izd-vo SPbGETU «LETI», 43. Available at: http://8361.ru/fvo/bsf/Kosarev-Artilleriiskoe_oruzhie.pdf
  26. Novak, D. A., Volkov, I. D. (2019). Methodical approach to determine the dependence of the deviation of the initial speed of the shells through the extension of the charging chamber artillery guns, measured with the help of the instrument for measuring the chambers. Military Technical Collection, 20, 28–32. doi: https://doi.org/10.33577/2312-4458.20.2019.28-32
  27. Anipko, O. B., Khaykov, V. L. (2012). Methods analysis for assessment of propellant charges as a part of the artillery ammunition monitoring system. Integrirovannye tehnologii i energosberezhenie, 3, 60–71. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/2199
  28. Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J. (2002). Least Squares Support Vector Machines. World Scientific, 308. doi: https://doi.org/10.1142/5089
  29. Xia, X.-L., Jiao, W., Li, K., Irwin, G. (2013). A Novel Sparse Least Squares Support Vector Machines. Mathematical Problems in Engineering, 2013, 1–10. doi: https://doi.org/10.1155/2013/602341
  30. Huseby, M. (2007). Noise emission data for M109, 155 mm field howitzer. Norwegian Defence Research Establishment (FFI), 45. Available at: https://www.ffi.no/en/publications-archive/noise-emission-data-for-m109-155-mm-field-howitzer
  31. Gagniuc, P. A. (2017). Markov Chains: From Theory to Implementation and Experimentation. John Wiley & Sons. doi: https://doi.org/10.1002/9781119387596
  32. Mavrakakis, M. C., Penzer, J. (2021). Probability and Statistical Inference. From Basic Principles to Advanced Models. Chapman and Hall/CRC, 444. doi: https://doi.org/10.1201/9781315366630
  33. Ishizaka, A., Nemery, P. (2013). Multi-Criteria Decision Analysis: Methods and Software. John Wiley & Sons. doi: https://doi.org/10.1002/9781118644898
  34. Zavadskas, E. K., Antuchevičienė, J., Kapliński, O. (2016). Multi-criteria decision making in civil engineering: Part I – a state-of-the-art survey. Engineering Structures and Technologies, 7 (3), 103–113. doi: https://doi.org/10.3846/2029882x.2015.1143204
  35. Aldoegre, M. (2019). Comparison between trajectory models for firing table application. North-West University, Potchefstroom. Available at: https://5dok.net/document/7q08x49y-comparison-between-trajectory-models-for-firing-table-application.html
  36. Song, X., Gao, M., Wang, Y., Wu, H., Cui, X. (2019). Research on Evaluation Methods of Firing Precision of Trajectory Correction Projectile. IOP Conference Series: Materials Science and Engineering, 612 (3), 032095. doi: https://doi.org/10.1088/1757-899x/612/3/032095
  37. Carlucci, D. E., Jacobson, S. S. (2018). Ballistics. Theory and Design of Guns and Ammunition. CRC Press, 654. doi: https://doi.org/10.1201/b22201
  38. Li, W., Liu, Z. (2011). A method of SVM with Normalization in Intrusion Detection. Procedia Environmental Sciences, 11, 256–262. doi: https://doi.org/10.1016/j.proenv.2011.12.040
  39. Awad, M., Khanna, R. (2015). Support Vector Machines for Classification. Efficient Learning Machines, 39–66. doi: https://doi.org/10.1007/978-1-4302-5990-9_3
  40. Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J. (2002). Least Squares Support Vector Machines. World Scientific, Singapore, 308. doi: https://doi.org/10.1142/5089
  41. Xia, X.-L., Jiao, W., Li, K., Irwin, G. (2013). A Novel Sparse Least Squares Support Vector Machines. Mathematical Problems in Engineering, 2013, 1–10. doi: https://doi.org/10.1155/2013/602341
  42. LS–SVMlab toolbox. Available at: https://www.esat.kuleuven.be/sista/lssvmlab/
  43. James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). Support Vector Machines. An Introduction to Statistical Learning, 337–372. doi: https://doi.org/10.1007/978-1-4614-7138-7_9
  44. Pelykh, S. N., Maksimov, M. V. (2013). The method of fuel rearrangement control considering fuel element cladding damage and burnup. Problems of Atomic Science and Technology, 5 (87). Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_84a.pdf
  45. Maksimov, M. V., Pelykh, S. N., Gontar, R. L. (2012). Principles of controlling fuel-element cladding lifetime in variable VVER-1000 loading regimes. Atomic Energy, 112 (4), 241–249. doi: https://doi.org/10.1007/s10512-012-9552-3
  46. Petrenko, V. M., Liapa, M. M., Prykhodko, A. I. et. al. (2015). Zasoby pidhotovky ta upravlinnia vohnem artyleriyi. Sumy: Sumskyi derzhavnyi universytet, 458. Available at: https://core.ac.uk/download/pdf/339163633.pdf

Downloads

Published

2021-12-29

How to Cite

Boltenkov, V., Brunetkin, O. ., Dobrynin, Y., Maksymova, O., Kuzmenko, V., Gultsov, P., Demydenko, V. ., & Soloviova, O. (2021). Devising a method for improving the efficiency of artillery shooting based on the Markov model. Eastern-European Journal of Enterprise Technologies, 6(3 (114), 6–17. https://doi.org/10.15587/1729-4061.2021.245854

Issue

Section

Control processes