Effect of interalated lithium on electronic structure of talc

Authors

  • Оксана Василівна Балабан Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0003-4121-9685
  • Богдан Антонович Лукіянець Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013, Ukraine
  • Степан Васильович Сиротюк Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.24619

Keywords:

talc, electronic properties, intercalation, lithium, ABINIT, PAW, potential energy minima

Abstract

In order to characterize the process of intercalation the electronic states (partial and total density of states) of talc, the Fermi level, the potential energy minima are evaluated within the projector augmented wave method (PAW). It is shown that the p-states of O mainly form the valence band while s- states of Si, O, Мg mainly form the conduction band of the talc. The calculated band gap is 5,08 еV. Total energy of the talc with the penetrated lithium into these minima is analyzed. It is obtained that the thermodynamically stable state of the talc/Li system is realized with lithium in the van der Waals gap of the talc structure. This fact coincides with experimental data according to which a guest penetrates exactly into the van der Waals gap during intercalation process. The lithium atom intercalated into the minima of the initial talc potential energy causes the reduction of the band gap and increase in the Fermi energy. These results will be used in the industrial production of batteries. 

Author Biographies

Оксана Василівна Балабан, Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013

Postgraduate student

Department of Applied Physics and Nanomaterial Science

Богдан Антонович Лукіянець, Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013

Doctor of Physical and Mathematical Sciences, Professor

Department of Applied Physics and Nanomaterial Science

Степан Васильович Сиротюк, Lviv Polytechnic National University Kotlyarevskii Str. 1, Lviv, Ukraine, 79013

PhD

Department of Semiconductor Electronics

References

  1. Смольянинов, Н. А. Практическое руководство по минералогии [Текст] / Н. А. Смольянинов. - М. : Недра, 1972. - 360 с.
  2. Pidluzhna, A. Y. Li+-intercalation in talc doped by oxygen and sulphur [Text] / A. Y. Pidluzhna, I. I. Grygorchak, M. V. Nykypanchuk, B. K. Ostafiychuk, І. М. Budzulyak, М. М. Mitsov, L. S. Yablon // PCSS. - 2010. -Vol. 11, № 2.- P. 447-452.
  3. Grygorchak, I. I. Talc as a new host material in intercalation nanotechnologies [Text] / I. I. Grygorchak // Reports of NAS of Ukraine. - 2002. -Vol. 6.- P. 110-113.
  4. Sehin, M. Thermodynamic parameters of the intercalation reaction in thermal and laser modified nanodispersed anatase [Text] / M. Sehin, I. Budzulyak, O. Morushko, L. Yablon // Mater. Sci. Eng., B. - 2013. -Vol. 3, №4.- P. 244-246.
  5. Perdikatsis, B. Strukturverfeinerung am Talk Mg3[Si4O10](OH)2 [Text] / B. Perdikatsis, H. Burzlaff // Zeits. Krist. - 1981. - Vol. 156.- P. 177-186.
  6. Кристаллохимия [Текст]: Краткий курс : учеб. пособие для студентов, обучающихся по специальности 020303 ”Геохимия” / под ред. В. С. Урусов, Н. Н. Еремин. - М. : Изд-во Моск. ун-та, 2010. - 254 с.
  7. Rümmeli, M. H. Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications [Text] / M. H. Rümmeli, P. Ayala, Th. Pichler; editors D. M. Guldi, N. Martín. - Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. - 539 p.
  8. Чибисов, А. Н. Атомная структура, распределение заряда и свойства Mg3Si4O10(OH)2: по данным квантово-механических расчетов [Текст] / А. Н. Чибисов // Химическая физика и мезоскопия. - 2009. -Т. 11, №4.- C. 528-533.
  9. Чибисов, А. Н. Влияние примесных атомов на атомную и электронную структуру нанопористых силикатов [Текст] / А. Н. Чибисов, М. А. Чибисова // Вестник Тогу. - 2012. -Т. 3, №26.- C. 41-48.
  10. Чибисов, А. Н. Моделирование атомной и электронной структуры мезопористого SiO2, содержащего ионы Ti4+, Zr4+ [Текст] / А. Н. Чибисов, М. А. Чибисова // Журнал технической физики. - 2011. -Т. 81, №4.- C. 138-140.
  11. Koudriachova, M. V. Mechanism of lithium intercalation in titanates [Text] / M. V. Koudriachova // J. Solid State
  12. Electrochem. - 2010. -Vol. 14.- P. 549-553.
  13. Tackett, A. R. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis [Text] / A. R. Tackett, N. A. W. Holzwarth, G. E. Matthews // Comput. Phys. Commun. - 2001. -Vol. 135, №3.- P. 348-376.
  14. Holzwarth, N. A. W. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions [Text] / N. A. W. Holzwarth, A. R. Tackett, G. E. Matthews // Comput. Phys. Commun. - 2001. -Vol. 135, №3.- P. 329-347.
  15. Kohn, W. Self-consistent equations including exchange and correlation effects [Text] / W. Kohn, L. J. Sham // Phys. Rev. - 1965. -Vol. 140, №4A.- P. A1133-A1138.
  16. Vosko, S. H. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis [Text] / S. H. Vosko, L. Wilk, M. Nusair // Can. J. Phys. - 1980. -Vol. 58.- P. 1200-1211.
  17. Perdew, J. P. Self-interaction correction to density-functional approximations for many-electron systems [Text] / J. P. Perdew, A. Zunger // Phys. Rev. B. - 1981. -Vol. 23, №10.- P. 5048-5079.
  18. Ceperley, D. M. Ground state of the electron gas by a stochastic method [Text] / D. M. Ceperley, B. J. Alder // Phys. Rev. Lett. - 1980. -Vol. 45, №7.- P. 566-569.
  19. Немошкаленко, В. В. Методы вычислительной физики в теории твёрдого тела [Текст] / В. В. Немошкаленко, В. Н. Анто- нов. -К.: Наукова думка, 1985.- 408 с.
  20. Gonze, X. ABINIT: First-principles approach of materials and nanosystem properties [Text] / X. Gonze, B. Amadon, P.-M. Anglade, ets // Comput. Phys. Commun.- 2009. -Vol. 180.- P. 2582-2615.
  21. Grygorchak, І. І. Intercalation: achievements, problems, outlook (Review) [Text] / І. І. Grygorchak // PCSS. - 2001. -Vol. 2, №1.- P. 7-57.
  22. Smoljaninov, N. A. (1972). Praktycheskoe rukovodstvo po mineralogii. Мoscow. Nedra, 360.
  23. Pidluzhna, A. Y., Grygorchak, I. I., Nykypanchuk, M. V., Ostafiychuk, B. K, Budzulyak, І. М., Mitsov, М. М., Yablon, L. S. (2010). Li+-intercalation in talc doped by oxygen and sulphur. PCSS, 11, 447-452.
  24. Grygorchak, I. I. (2002). Talc as a new host material in intercalation nanotechnologies. Reports of NAS of Ukraine, 6, 110-113.
  25. Sehin, M., Budzulyak, I., Morushko, O., Yablon, L. (2013). Thermodynamic parameters of the intercalation reaction in thermal and laser modified nanodispersed anatase. Mater. Sci. Eng., B, 3, 244-246.
  26. Perdikatsis, B., Burzlaff, H. (1981). Strukturverfeinerung am Talk Mg3[Si4O10](OH)2. Zeits. Krist., 156, 177-186 (in German).
  27. Urusov, V. S., Eremin, N. N. (2010). Crystal chemistry. Moscow Uni¬versity, Moscow, 254 (in Russian).
  28. Rümmeli, M. H., Ayala, P., Pichler, Th. (2010). Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionaliza¬tion, and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 539.
  29. Chibisov, A. N. (2009). Atomic structure, charge distribution and properties Mg3Si4O10(OH)2 according to the quantum-mechanical calculations. Hymycheskaya fyzyka and mezoskopyya, 11, 528-533. (in Russian).
  30. Chibisov, A. N., Chibisova, M. A. (2012). Influence of impurity atoms on the atomic and electronic structure of nanoporous silicates. Bul¬letin of PNU, 26, 41-48 (in Russian).
  31. Chibisov, A. N., Chibisova, M. A. (2011). Simulation of the atomic and electronic structures of mesoporous SiO2 containing Ti4+ and Zr4+ ions. Technical Physics, 56, 567-
  32. Koudriachova, M. V. (2010). Mechanism of lithium intercalation in titanates. J. Solid State Electrochem., 14, 549-553.
  33. Tackett, A. R., Holzwarth, N. A. W., Matthews, G. E. (2001). A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis. Comput. Phys. Commun., 135, 348-376.
  34. Holzwarth, N. A. W., Tackett, A. R., Matthews, G. E. (2001). A Projector Augmented Wave (PAW) code for electronic structure cal¬culations, Part I: atompaw for generating atom-centered functions. Comput. Phys. Commun., 135, 329-347.
  35. Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133-A1138.
  36. Vosko, S. H., Wilk, L., Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calcula¬tions: a critical analysis. Can. J. Phys., 58, 1200-1211.
  37. Perdew, J. P., Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-
  38. electron systems. Phys. Rev. B., 23, 5048-5079.
  39. Ceperley, D. M., Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566-569.
  40. Nemoshkalenko, V. V., Antonov, V. N. (1985). Computational Methods: Band Theory of Metals, Naukova Dumka, Kiev, 408 (in Rus¬sian).
  41. Gonze, X., Amadon, B., Anglade, P.-M. (2009). ABINIT: First-principles approach of materials and nanosystem properties. Comput. Phys. Commun., 180, 2582-2615.
  42. Grygorchak, І. І. (2001). Intercalation: achievements, problems, outlook (Review). PCSS, 2, 7-57.

Published

2014-06-22

How to Cite

Балабан, О. В., Лукіянець, Б. А., & Сиротюк, С. В. (2014). Effect of interalated lithium on electronic structure of talc. Eastern-European Journal of Enterprise Technologies, 3(5(69), 15–19. https://doi.org/10.15587/1729-4061.2014.24619