Effect of interalated lithium on electronic structure of talc
DOI:
https://doi.org/10.15587/1729-4061.2014.24619Keywords:
talc, electronic properties, intercalation, lithium, ABINIT, PAW, potential energy minimaAbstract
In order to characterize the process of intercalation the electronic states (partial and total density of states) of talc, the Fermi level, the potential energy minima are evaluated within the projector augmented wave method (PAW). It is shown that the p-states of O mainly form the valence band while s- states of Si, O, Мg mainly form the conduction band of the talc. The calculated band gap is 5,08 еV. Total energy of the talc with the penetrated lithium into these minima is analyzed. It is obtained that the thermodynamically stable state of the talc/Li system is realized with lithium in the van der Waals gap of the talc structure. This fact coincides with experimental data according to which a guest penetrates exactly into the van der Waals gap during intercalation process. The lithium atom intercalated into the minima of the initial talc potential energy causes the reduction of the band gap and increase in the Fermi energy. These results will be used in the industrial production of batteries.
References
- Смольянинов, Н. А. Практическое руководство по минералогии [Текст] / Н. А. Смольянинов. - М. : Недра, 1972. - 360 с.
- Pidluzhna, A. Y. Li+-intercalation in talc doped by oxygen and sulphur [Text] / A. Y. Pidluzhna, I. I. Grygorchak, M. V. Nykypanchuk, B. K. Ostafiychuk, І. М. Budzulyak, М. М. Mitsov, L. S. Yablon // PCSS. - 2010. -Vol. 11, № 2.- P. 447-452.
- Grygorchak, I. I. Talc as a new host material in intercalation nanotechnologies [Text] / I. I. Grygorchak // Reports of NAS of Ukraine. - 2002. -Vol. 6.- P. 110-113.
- Sehin, M. Thermodynamic parameters of the intercalation reaction in thermal and laser modified nanodispersed anatase [Text] / M. Sehin, I. Budzulyak, O. Morushko, L. Yablon // Mater. Sci. Eng., B. - 2013. -Vol. 3, №4.- P. 244-246.
- Perdikatsis, B. Strukturverfeinerung am Talk Mg3[Si4O10](OH)2 [Text] / B. Perdikatsis, H. Burzlaff // Zeits. Krist. - 1981. - Vol. 156.- P. 177-186.
- Кристаллохимия [Текст]: Краткий курс : учеб. пособие для студентов, обучающихся по специальности 020303 ”Геохимия” / под ред. В. С. Урусов, Н. Н. Еремин. - М. : Изд-во Моск. ун-та, 2010. - 254 с.
- Rümmeli, M. H. Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications [Text] / M. H. Rümmeli, P. Ayala, Th. Pichler; editors D. M. Guldi, N. Martín. - Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. - 539 p.
- Чибисов, А. Н. Атомная структура, распределение заряда и свойства Mg3Si4O10(OH)2: по данным квантово-механических расчетов [Текст] / А. Н. Чибисов // Химическая физика и мезоскопия. - 2009. -Т. 11, №4.- C. 528-533.
- Чибисов, А. Н. Влияние примесных атомов на атомную и электронную структуру нанопористых силикатов [Текст] / А. Н. Чибисов, М. А. Чибисова // Вестник Тогу. - 2012. -Т. 3, №26.- C. 41-48.
- Чибисов, А. Н. Моделирование атомной и электронной структуры мезопористого SiO2, содержащего ионы Ti4+, Zr4+ [Текст] / А. Н. Чибисов, М. А. Чибисова // Журнал технической физики. - 2011. -Т. 81, №4.- C. 138-140.
- Koudriachova, M. V. Mechanism of lithium intercalation in titanates [Text] / M. V. Koudriachova // J. Solid State
- Electrochem. - 2010. -Vol. 14.- P. 549-553.
- Tackett, A. R. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis [Text] / A. R. Tackett, N. A. W. Holzwarth, G. E. Matthews // Comput. Phys. Commun. - 2001. -Vol. 135, №3.- P. 348-376.
- Holzwarth, N. A. W. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions [Text] / N. A. W. Holzwarth, A. R. Tackett, G. E. Matthews // Comput. Phys. Commun. - 2001. -Vol. 135, №3.- P. 329-347.
- Kohn, W. Self-consistent equations including exchange and correlation effects [Text] / W. Kohn, L. J. Sham // Phys. Rev. - 1965. -Vol. 140, №4A.- P. A1133-A1138.
- Vosko, S. H. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis [Text] / S. H. Vosko, L. Wilk, M. Nusair // Can. J. Phys. - 1980. -Vol. 58.- P. 1200-1211.
- Perdew, J. P. Self-interaction correction to density-functional approximations for many-electron systems [Text] / J. P. Perdew, A. Zunger // Phys. Rev. B. - 1981. -Vol. 23, №10.- P. 5048-5079.
- Ceperley, D. M. Ground state of the electron gas by a stochastic method [Text] / D. M. Ceperley, B. J. Alder // Phys. Rev. Lett. - 1980. -Vol. 45, №7.- P. 566-569.
- Немошкаленко, В. В. Методы вычислительной физики в теории твёрдого тела [Текст] / В. В. Немошкаленко, В. Н. Анто- нов. -К.: Наукова думка, 1985.- 408 с.
- Gonze, X. ABINIT: First-principles approach of materials and nanosystem properties [Text] / X. Gonze, B. Amadon, P.-M. Anglade, ets // Comput. Phys. Commun.- 2009. -Vol. 180.- P. 2582-2615.
- Grygorchak, І. І. Intercalation: achievements, problems, outlook (Review) [Text] / І. І. Grygorchak // PCSS. - 2001. -Vol. 2, №1.- P. 7-57.
- Smoljaninov, N. A. (1972). Praktycheskoe rukovodstvo po mineralogii. Мoscow. Nedra, 360.
- Pidluzhna, A. Y., Grygorchak, I. I., Nykypanchuk, M. V., Ostafiychuk, B. K, Budzulyak, І. М., Mitsov, М. М., Yablon, L. S. (2010). Li+-intercalation in talc doped by oxygen and sulphur. PCSS, 11, 447-452.
- Grygorchak, I. I. (2002). Talc as a new host material in intercalation nanotechnologies. Reports of NAS of Ukraine, 6, 110-113.
- Sehin, M., Budzulyak, I., Morushko, O., Yablon, L. (2013). Thermodynamic parameters of the intercalation reaction in thermal and laser modified nanodispersed anatase. Mater. Sci. Eng., B, 3, 244-246.
- Perdikatsis, B., Burzlaff, H. (1981). Strukturverfeinerung am Talk Mg3[Si4O10](OH)2. Zeits. Krist., 156, 177-186 (in German).
- Urusov, V. S., Eremin, N. N. (2010). Crystal chemistry. Moscow Uni¬versity, Moscow, 254 (in Russian).
- Rümmeli, M. H., Ayala, P., Pichler, Th. (2010). Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionaliza¬tion, and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 539.
- Chibisov, A. N. (2009). Atomic structure, charge distribution and properties Mg3Si4O10(OH)2 according to the quantum-mechanical calculations. Hymycheskaya fyzyka and mezoskopyya, 11, 528-533. (in Russian).
- Chibisov, A. N., Chibisova, M. A. (2012). Influence of impurity atoms on the atomic and electronic structure of nanoporous silicates. Bul¬letin of PNU, 26, 41-48 (in Russian).
- Chibisov, A. N., Chibisova, M. A. (2011). Simulation of the atomic and electronic structures of mesoporous SiO2 containing Ti4+ and Zr4+ ions. Technical Physics, 56, 567-
- Koudriachova, M. V. (2010). Mechanism of lithium intercalation in titanates. J. Solid State Electrochem., 14, 549-553.
- Tackett, A. R., Holzwarth, N. A. W., Matthews, G. E. (2001). A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis. Comput. Phys. Commun., 135, 348-376.
- Holzwarth, N. A. W., Tackett, A. R., Matthews, G. E. (2001). A Projector Augmented Wave (PAW) code for electronic structure cal¬culations, Part I: atompaw for generating atom-centered functions. Comput. Phys. Commun., 135, 329-347.
- Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133-A1138.
- Vosko, S. H., Wilk, L., Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calcula¬tions: a critical analysis. Can. J. Phys., 58, 1200-1211.
- Perdew, J. P., Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-
- electron systems. Phys. Rev. B., 23, 5048-5079.
- Ceperley, D. M., Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566-569.
- Nemoshkalenko, V. V., Antonov, V. N. (1985). Computational Methods: Band Theory of Metals, Naukova Dumka, Kiev, 408 (in Rus¬sian).
- Gonze, X., Amadon, B., Anglade, P.-M. (2009). ABINIT: First-principles approach of materials and nanosystem properties. Comput. Phys. Commun., 180, 2582-2615.
- Grygorchak, І. І. (2001). Intercalation: achievements, problems, outlook (Review). PCSS, 2, 7-57.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Оксана Василівна Балабан, Богдан Антонович Лукіянець, Степан Васильович Сиротюк
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.