Design of an universal source for semi-automatic ac welding and induction heating

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.246397

Keywords:

semi-automatic welding, power source, induction heating, electric power quality, power factor, FCAW welding

Abstract

This paper proposes a circuit solution and a power source control algorithm for semi-automatic AC welding with improved energy and weight-size characteristics. A distinctive feature of the designed source is the absence of an input rectifier: welding is carried out with a high-frequency alternating current. That has made it possible to significantly reduce power losses in the source, as well as provide the possibility of implementing induction heating by connecting an inductor to the source output.

Another distinctive feature of the designed source is an increased power factor and a reduced level of higher harmonics of the current consumed. The power factor of the described source reaches 0.94 against 0.5÷0.7 for sources equipped with a conventional rectifier with capacitive smoothing.

The designed source's composition includes a power supply system for the wire feed drive with speed stabilization due to positive feedback on the motor current. That has made it possible to ensure the stable operation of the drive in a wide range of speeds. A model has also been developed of a flux wire welding torch containing a feed drive and a coil with a wire (up to 100 mm in diameter), placed, in order to reduce the size, in the handle of the torch.

In addition to the welding function, the source makes it possible to solve the tasks related to induction heating and/or hardening of small parts; to that end, a compact inductor is connected to its output.

Tests of the source showed the feasibility of the proposed ideas and circuit solutions. The dimensions of the source are 190×107×65 mm; weight, 1.4 kg; output current, up to 120 A. The proposed technical solution enables the construction of small-sized, lightweight, universal, easy-to-use power supplies for semi-automatic welding with the option of induction heating

Supporting Agency

  • Авторы выражают благодарность доктору технических наук, профессору кафедры систем автоматизации и электропривода ГВУЗ «ПГТУ» Сергею Владимировичу Гулакову за ценные идеи, рекомендации, советы и замечания по работе.

Author Biographies

Vladimir Burlaka, Pryazovskyi State Technical University

Doctor of Technical Sciences, Professor

Department of Automation Systems and Electric Drives

Elena Lavrova, Pryazovskyi State Technical University

Doctor of Technical Sciences, Professor

Department of Automation and Mechanization of Welding Production

Svetlana Podnebennaya, Pryazovskyi State Technical University

Doctor of Technical Sciences, Professor

Department of Automation Systems and Electric Drives

Vitaliy Ivanov, Pryazovskyi State Technical University

Doctor of Technical Sciences, Professor

Department of Automation and Mechanization of Welding Production

Serhii Burikov, LLC "GSKBV named after BUBNOV"

Lead Engineer

References

  1. Hamzeh, R., Thomas, L., Polzer, J., Xu, X. W., Heinzel, H. (2020). A Sensor Based Monitoring System for Real-Time Quality Control: Semi-Automatic Arc Welding Case Study. Procedia Manufacturing, 51, 201–206. doi: https://doi.org/10.1016/j.promfg.2020.10.029
  2. Potap'evskiy, A. G., Saraev, Yu. N., Chinahov, D. A. (2012). Svarka staley v zaschitnyh gazah plavyaschimsya elektrodom. Tekhnika i tekhnologiya buduschego. Tomsk: izd-vo Tomskogo politekhnicheskogo universiteta, 208.
  3. Singh, R. (2012). Applied welding engineering: processes, codes, and standards. Butterworth-Heinemann. doi: https://doi.org/10.1016/C2011-0-00112-6
  4. Mustafa, F. F., Rao’f, M. I. (2016). Automatic Welding Machine For Pipeline Using MIG Welding Process. International Research Journal of Engineering and Technology (IRJET), 03 (12), 1448–1454. Available at: http://docplayer.net/32498681-Automatic-welding-machine-for-pipeline-using-mig-welding-process.html
  5. Burlaka, V., Lavrova, E., Podnebennaya, S., Zakharova, I. (2017). Development of single-phase high-power factor inverter welding sources. Eastern-European Journal of Enterprise Technologies, 4 (1 (88)), 18–24. doi: https://doi.org/10.15587/1729-4061.2017.106957
  6. Svarochniy poluavtomaticheskiy apparat Tesla Weld FCAW 240. Available at: https://teslaweld.com/svarochnyy-poluavtomaticheskiy-apparat-tesla-weld-fcaw-240
  7. Zvariuvalnyi napivavtomat EDON SmartMIG-275 (2 в 1 MIG MMA). Available at: https://edon-redbo.com.ua/catalog/svarochnyy_poluavtomat_edon_smartmig_275_2_v_1_mig_mma.html
  8. Svarochniy poluavtomat Kaiser ARC-FLUX 120 (85190). Available at: https://kulibin.com.ua/catalog/svarochnye_poluavtomaty/kaiser-85190/
  9. Yang, H., Kerui, C., Yang, L., Bao, Q. (2018). FCAW vertical welding of “V” butt plate in AC UHV transmission line construction. MATEC Web of Conferences, 175, 03001. doi: https://doi.org/10.1051/matecconf/201817503001
  10. Lebedjev, V., Khalimovskyy, O. (2019). Еlectric drives in the equipment for mechanized and automatic arc welding. Scientific Journal of the Ternopil National Technical University, 93 (1), 81–91. doi: https://doi.org/10.33108/visnyk_tntu2019.01.081
  11. Product Information Chart. Readywelder. Available at: http://readywelder.com.au/readywelders/?pid=welders
  12. Ivanov, V., Lavrova, E., Burlaka, V., Duhanets, V. (2019). Calculation of the penetration zone geometric parameters at surfacing with a strip electrode. Eastern-European Journal of Enterprise Technologies, 6 (5 (102)), 57–62. doi: https://doi.org/10.15587/1729-4061.2019.187718
  13. Ivanov, V. P., Lavrova, E. V., Il’yaschenko, D. P., Verkhoturova, E. V. (2020). Modelling of fusion zone formation in shielded metal arc welding. Structural integrity and life, 20 (3), 281–284. Available at: http://divk.inovacionicentar.rs/ivk/ivk20/281-IVK3-2020-VPI-EVL-DPI-EVV.pdf
  14. BS EN 61000-3-12:2011. Electromagnetic compatibility (EMC). Limits. Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and ≤ 75 A per phase. doi: https://doi.org/10.3403/30183042
  15. IEC 61000-6-4:2018. Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments. Available at: https://standards.iteh.ai/catalog/standards/iec/32d913f3-8f13-4f51-b595-eb50eb817af9/iec-61000-6-4-2018
  16. DSTU EN 50160:2014. Voltage characteristics of electricity supplied by public electricity networks (EN 50160:2010, IDT) (2014). Kyiv, 32. Available at: https://www.en.lg.ua/images/stories/2019/standart-yakosti.pdf
  17. Podnebennaya, S. K., Burlaka, V. V., Gulakov, S. V. (2013). A power parallel active filter with higher efficiency. Russian Electrical Engineering, 84 (6), 308–313. doi: https://doi.org/10.3103/s1068371213060072
  18. Sundaram, M., Vaideeswaran, V. (2018). Active Power Factor Correction for Welding Power Source. International Journal of Engineering Research & Technology (IJERT), 7 (01), 364–367. Available at: https://www.ijert.org/research/active-power-factor-correction-for-welding-power-source-IJERTV7IS010161.pdf
  19. Power factor correction: a guide for the plant engineer. Technical Data SA02607001E (2014). EATON. Available at: https://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/sa02607001e.pdf
  20. Inverter Power Consumption: Energy Savings (2006). The Lincoln Electric Company. Document No. NX-3.30. Available at: https://www.lincolnelectric.com/assets/US/EN/literature/NX330.pdf
  21. Podnebenna, S. K., Burlaka, V. V., Gulakov, S. V. (2017). Three-Phase Power Supply For Resistance Welding Machine With Corrected Power Factor. Naukovij Visnik NGU, 4, 67–72. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2017_4_12
  22. Haque, A. (2016). Valley-Fill Circuit for Power Quality Improvement. International Journal for Innovative Research in Science & Technology, 2 (09), 223–227.
  23. Bouafassa, A., Fernández-Ramírez, L. M., Babes, B. (2020). Power quality improvements of arc welding power supplies by modified bridgeless SEPIC PFC converter. Journal of Power Electronics, 20 (6), 1445–1455. doi: https://doi.org/10.1007/s43236-020-00143-2
  24. Khatua, M., Kumar, A., Pervaiz, S., Chakraborty, S., Afridi, K. (2021). A Single-Stage Isolated AC–DC Converter Based on the Impedance Control Network Architecture. IEEE Transactions on Power Electronics, 36 (9), 10366–10382. doi: https://doi.org/10.1109/tpel.2021.3065296
  25. Ivanov, V., Lavrova, E. V., Kibish, V., Mamontov, I. (2021). Research of the Microstructure of the Deposited Layer during Electric Arc Surfacing with Control Impacts. Materials Science Forum, 1038, 85–92. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.85
  26. Ivanov, V., Lavrova, E. V., Morgay, F., Semkiv, O. (2021). Investigation of the Heat-Affected Zone Properties During Cladding of Power Equipment with Austenitic Materials Using Control Mechanical Impacts on the Strip Electrode. Materials Science Forum, 1038, 100–107. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.100
  27. Ivanov, V., Lavrova, E. (2018). Development of the Device for Two-Strip Cladding with Controlled Mechanical Transfer. Journal of Physics: Conference Series, 1059, 012020. doi: https://doi.org/10.1088/1742-6596/1059/1/012020
  28. Bellec, Q., Le Claire, J.-C., Benkhoris, M. F., Coulibaly, P. (2021). A New Robust Digital Non-Linear Control for Power Factor Correction – Arc Welding Applications. Energies, 14 (4), 991. doi: https://doi.org/10.3390/en14040991
  29. Ramakrishnaprabu, G., Gunasekar (2016). A Single-Switch Improved Valley-Fill Passive Current Shaper for Compact Fluorescent Lightings. International Journal of Innovative Research in Science, Engineering and Technology, 5 (6), 10567–10573. Available at: http://www.ijirset.com/upload/2016/june/192_A%20SINGLE.pdf
  30. Burlaka, V., Gulakov, S., Podnebennaya, S., Kudinova, E., Savenko, O. (2020). Bidirectional single stage isolated DC-AC converter. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek). doi: https://doi.org/10.1109/khpiweek51551.2020.9250107
  31. Leschinskiy, L. K., Samotugin, S. S. (2005). Sloistye naplavlennye i uprochnennye kompozitsii. Mariupol', 392. Available at: http://eir.pstu.edu/bitstream/handle/123456789/5655/%D0%9B%D0%B5%D1%89%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9.%20%D0%A1%D0%B0%D0%BC%D0%BE%D1%82%D1%83%D0%B3%D0%B8%D0%BD.%20%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5.pdf?sequence=1

Downloads

Published

2021-12-29

How to Cite

Burlaka, V., Lavrova, E., Podnebennaya, S., Ivanov, V., & Burikov, S. (2021). Design of an universal source for semi-automatic ac welding and induction heating. Eastern-European Journal of Enterprise Technologies, 6(1 (114), 38–46. https://doi.org/10.15587/1729-4061.2021.246397

Issue

Section

Engineering technological systems