Food safety of plasma-chemically activated water and bread made with its use

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.246546

Keywords:

plasma-chemically activated water, food safety, wheat bread, subchronic toxicity

Abstract

Water treatment by contact non-equilibrium low-temperature plasma refers to innovative methods of processing food raw materials, which requires determining the level of safety of its use to meet the requirements of food safety for humans. The test animals were divided into four test groups with two different basic diets. The tested substances were drinking main water (control group) and plasma-chemically activated water (experimental group); wheat bread (control group) and wheat bread produced using plasma-chemically activated water (experimental group). It was found that there was no significant difference between the control and experimental groups of animals in body weight and its changes during 90 days of the introduction of the test substances into the diet. The amount of water and feed consumed was in direct proportion to the change in the weight of animals in the corresponding diets.

The hematological and biochemical analysis of the blood of the test rats did not confirm the toxic or allergenic effect of the studied feeding factors on their organism. An increase in the number of erythrocytes in the blood and activation of the phagocytic activity of experimental groups of animals were confirmed. This confirms the positive effect of plasma-chemically activated water and wheat bread made with its use on metabolic processes in the body of animals.

Macromorphological parameters of the body of animals and the results of histological studies of the stomach, liver, kidneys and femur as potential target organs demonstrated the absence of dystrophic-degenerative changes in these organs. A comprehensive study of the food safety of plasma-chemically activated water and wheat bread made with its use proves the possibility of using an innovative method of water treatment in food production.

Supporting Agency

  • Дослідження виконані в рамках гранту на виконання наукової роботи молодих вчених, профінансованого Міністерством освіти і науки України (№ 0120U100322). Автори висловлюють вдячність за організаційну підтримку директору науково-дослідного центру біобезпеки і екологічного контролю ресурсів АПК Дніпровського державного аграрно-економічного університету д.в.н., проф. Масюку Дмитру Олександровичу, к.в.н., доц. Гавриліній Олені Геннадіївні за допомогу в гістологічних дослідженнях і аспіранту Соколову Володимиру Юрійовичу за допомогу щодо утримання тварин та фіксації клінічних показників протягом експериментальних досліджень.

Author Biographies

Svitlana Mykolenko, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Agricultural Products Processing and Storage Technologies

Olexandr Pivovarov, Dnipro State Agrarian and Economic University

Doctor of Technical Sciences, Professor

Department of Agricultural Products Processing and Storage Technologies

Valentyn Yefimov, Dnipro State Agrarian and Economic University

PhD, Associated Professor

Sciences and Research Center for Biosafety and Environmental Control of Agro-Industrial Complex

Nataliia Sova, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Agricultural Products Processing and Storage Technologies

Dmytro Tymchak, Dnipro State Agrarian and Economic University

Lecturer

Department of Agricultural Products Processing and Storage Technologies

References

  1. Wasi, S., Tabrez, S., Ahmad, M. (2013). Toxicological effects of major environmental pollutants: an overview. Environmental Monitoring and Assessment, 185 (3), 2585–2593. doi: https://doi.org/10.1007/s10661-012-2732-8
  2. Mekonnen, M. M., Gerbens-Leenes, W. (2020). The Water Footprint of Global Food Production. Water, 12 (10), 2696. doi: https://doi.org/10.3390/w12102696
  3. Faust, M., Backhaus, T., Altenburger, R., Dulio, V., van Gils, J., Ginebreda, A. et. al. (2019). Prioritisation of water pollutants: the EU Project SOLUTIONS proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. Environmental Sciences Europe, 31 (1). doi: https://doi.org/10.1186/s12302-019-0239-4
  4. Pivovarov, A. A., Tischenko, A. P. (2006). Neravnovesnaya plazma: protsessy aktivatsii vody i vodnyh rastvorov. Dnepropetrovsk: PP «Aktsent».
  5. Mykolenko, S. Yu., Sokolov, V. Yu., Penkova, V. V. (2016). Study of technological aspects of grain bread production with using additional treatment of raw materials. Grain Products and Mixed Fodder’s, 64 (4), 10–15. doi: https://doi.org/10.15673/gpmf.v64i4.260
  6. Pivovarov, A., Mykolenko, S., Hez’, Y., Shcherbakov, S. (2018). Plasma-chemically activated water influence on staling and safety of sprouted bread. Food Science and Technology, 12 (2). doi: https://doi.org/10.15673/fst.v12i2.940
  7. Altenburger, R., Brack, W., Burgess, R. M., Busch, W., Escher, B. I., Focks, A. et. al. (2019). Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 31 (1). doi: https://doi.org/10.1186/s12302-019-0193-1
  8. Ramírez Orejel, J. C., Cano-Buendía, J. A. (2020). Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes, 8 (5), 534. doi: https://doi.org/10.3390/pr8050534
  9. Nikmaram, N., Rosentrater, K. A. (2019). Overview of Some Recent Advances in Improving Water and Energy Efficiencies in Food Processing Factories. Frontiers in Nutrition, 6. doi: https://doi.org/10.3389/fnut.2019.00020
  10. Bhagwat, V. R. (2019). Safety of Water Used in Food Production. Food Safety and Human Health, 219–247. doi: https://doi.org/10.1016/b978-0-12-816333-7.00009-6
  11. Mohammad Fakhrul Islam, S., Karim, Z. (2020). World’s Demand for Food and Water: The Consequences of Climate Change. Desalination - Challenges and Opportunities. doi: https://doi.org/10.5772/intechopen.85919
  12. Xiang, Q., Fan, L., Li, Y., Dong, S., Li, K., Bai, Y. (2020). A review on recent advances in plasma-activated water for food safety: current applications and future trends. Critical Reviews in Food Science and Nutrition, 1–20. doi: https://doi.org/10.1080/10408398.2020.1852173
  13. Wang, Q., Salvi, D. (2021). Recent progress in the application of plasma-activated water (PAW) for food decontamination. Current Opinion in Food Science, 42, 51–60. doi: https://doi.org/10.1016/j.cofs.2021.04.012
  14. Kaushik, N. K., Ghimire, B., Li, Y., Adhikari, M., Veerana, M., Kaushik, N. et. al. (2018). Biological and medical applications of plasma-activated media, water and solutions. Biological Chemistry, 400 (1), 39–62. doi: https://doi.org/10.1515/hsz-2018-0226
  15. Zhao, Y., Patange, A., Sun, D., Tiwari, B. (2020). Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 19 (6), 3951–3979. doi: https://doi.org/10.1111/1541-4337.12644
  16. Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X. et. al. (2020). Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53 (30), 303001. doi: https://doi.org/10.1088/1361-6463/ab81cf
  17. Chiappim, W., Sampaio, A. da G., Miranda, F., Fraga, M., Petraconi, G., da Silva Sobrinho, A. et. al. (2021). Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water, 13 (11), 1480. doi: https://doi.org/10.3390/w13111480
  18. Pivovarov, A., Mykolenko, S., Honcharova, O. (2017). Biotesting of plasma-chemically activated water with the use of hydrobionts. Eastern-European Journal of Enterprise Technologies, 4 (10 (88)), 44–50. doi: https://doi.org/10.15587/1729-4061.2017.107201
  19. Juin, S. K., Sarkar, S., Maitra, S., Nath, P. (2017). Effect of fish vitellogenin on the growth of juvenile catfish, Clarias gariepinus (Burchell, 1822). Aquaculture Reports, 7, 16–26. doi: https://doi.org/10.1016/j.aqrep.2017.05.001
  20. Harianto, E., Supriyono, E., Budiardi, T., Affandi, R., Hadiroseyani, Y. (2021). The effect of water level in vertical aquaculture systems on production performance, biochemistry, hematology, and histology of Anguilla bicolor bicolor. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-90912-1
  21. Zhao, Y. ‐M., Ojha, S., Burgess, C. M., Sun, D. ‐W., Tiwari, B. K. (2020). Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. Journal of Applied Microbiology, 129 (5), 1248–1260. doi: https://doi.org/10.1111/jam.14677
  22. Hozák, P., Scholtz, V., Khun, J., Mertová, D., Vaňková, E., Julák, J. (2018). Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Physics Reports, 44 (9), 799–804. doi: https://doi.org/10.1134/s1063780x18090040
  23. Choi, E. H., Uhm, H. S., Kaushik, N. K. (2021). Plasma bioscience and its application to medicine. AAPPS Bulletin, 31 (1). doi: https://doi.org/10.1007/s43673-021-00012-5
  24. Guo, L., Yao, Z., Yang, L., Zhang, H., Qi, Y., Gou, L. et. al. (2021). Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal, 421, 127742. doi: https://doi.org/10.1016/j.cej.2020.127742
  25. Gavahian, M., Khaneghah, A. M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60 (9), 1581–1592. doi: https://doi.org/10.1080/10408398.2019.1584600
  26. Zambon, Y., Contaldo, N., Laurita, R., Várallyay, E., Canel, A., Gherardi, M. et. al. (2020). Plasma activated water triggers plant defence responses. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-76247-3
  27. Herianto, S., Hou, C., Lin, C., Chen, H. (2020). Nonthermal plasma‐activated water: A comprehensive review of this new tool for enhanced food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 20 (1), 583–626. doi: https://doi.org/10.1111/1541-4337.12667
  28. Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36 (6), 615–626. doi: https://doi.org/10.1016/j.tibtech.2017.11.001
  29. Rezaei, F., Vanraes, P., Nikiforov, A., Morent, R., De Geyter, N. (2019). Applications of Plasma-Liquid Systems: A Review. Materials, 12 (17), 2751. doi: https://doi.org/10.3390/ma12172751
  30. Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D., Gadre, S. R. (2001). Structure and Stability of Water Clusters (H2O)n, n = 8−20: An Ab Initio Investigation. The Journal of Physical Chemistry A, 105(46), 10525–10537. doi: https://doi.org/10.1021/jp013141b
  31. Larson, M. A., Garside, J. (1986). Solute clustering in supersaturated solutions. Chemical Engineering Science, 41 (5), 1285–1289. doi: https://doi.org/10.1016/0009-2509(86)87101-9
  32. Goncharuk, V. V. (2014). Water Clusters. Drinking Water, 51–103. doi: https://doi.org/10.1007/978-3-319-04334-0_3
  33. Xu, D., Wang, S., Li, B., Qi, M., Feng, R., Li, Q. et. al. (2020). Effects of Plasma-Activated Water on Skin Wound Healing in Mice. Microorganisms, 8 (7), 1091. doi: https://doi.org/10.3390/microorganisms8071091
  34. Everson, C. A. (2005). Clinical assessment of blood leukocytes, serum cytokines, and serum immunoglobulins as responses to sleep deprivation in laboratory rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289 (4), R1054–R1063. doi: https://doi.org/10.1152/ajpregu.00021.2005
  35. Gordon, S., Plüddemann, A. (2019). The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.01893

Downloads

Published

2021-12-14

How to Cite

Mykolenko, S., Pivovarov, O., Yefimov, V., Sova, N., & Tymchak, D. (2021). Food safety of plasma-chemically activated water and bread made with its use. Eastern-European Journal of Enterprise Technologies, 6(11 (114), 74–83. https://doi.org/10.15587/1729-4061.2021.246546

Issue

Section

Technology and Equipment of Food Production