Food safety of plasma-chemically activated water and bread made with its use
DOI:
https://doi.org/10.15587/1729-4061.2021.246546Keywords:
plasma-chemically activated water, food safety, wheat bread, subchronic toxicityAbstract
Water treatment by contact non-equilibrium low-temperature plasma refers to innovative methods of processing food raw materials, which requires determining the level of safety of its use to meet the requirements of food safety for humans. The test animals were divided into four test groups with two different basic diets. The tested substances were drinking main water (control group) and plasma-chemically activated water (experimental group); wheat bread (control group) and wheat bread produced using plasma-chemically activated water (experimental group). It was found that there was no significant difference between the control and experimental groups of animals in body weight and its changes during 90 days of the introduction of the test substances into the diet. The amount of water and feed consumed was in direct proportion to the change in the weight of animals in the corresponding diets.
The hematological and biochemical analysis of the blood of the test rats did not confirm the toxic or allergenic effect of the studied feeding factors on their organism. An increase in the number of erythrocytes in the blood and activation of the phagocytic activity of experimental groups of animals were confirmed. This confirms the positive effect of plasma-chemically activated water and wheat bread made with its use on metabolic processes in the body of animals.
Macromorphological parameters of the body of animals and the results of histological studies of the stomach, liver, kidneys and femur as potential target organs demonstrated the absence of dystrophic-degenerative changes in these organs. A comprehensive study of the food safety of plasma-chemically activated water and wheat bread made with its use proves the possibility of using an innovative method of water treatment in food production.
Supporting Agency
- Дослідження виконані в рамках гранту на виконання наукової роботи молодих вчених, профінансованого Міністерством освіти і науки України (№ 0120U100322). Автори висловлюють вдячність за організаційну підтримку директору науково-дослідного центру біобезпеки і екологічного контролю ресурсів АПК Дніпровського державного аграрно-економічного університету д.в.н., проф. Масюку Дмитру Олександровичу, к.в.н., доц. Гавриліній Олені Геннадіївні за допомогу в гістологічних дослідженнях і аспіранту Соколову Володимиру Юрійовичу за допомогу щодо утримання тварин та фіксації клінічних показників протягом експериментальних досліджень.
References
- Wasi, S., Tabrez, S., Ahmad, M. (2013). Toxicological effects of major environmental pollutants: an overview. Environmental Monitoring and Assessment, 185 (3), 2585–2593. doi: https://doi.org/10.1007/s10661-012-2732-8
- Mekonnen, M. M., Gerbens-Leenes, W. (2020). The Water Footprint of Global Food Production. Water, 12 (10), 2696. doi: https://doi.org/10.3390/w12102696
- Faust, M., Backhaus, T., Altenburger, R., Dulio, V., van Gils, J., Ginebreda, A. et. al. (2019). Prioritisation of water pollutants: the EU Project SOLUTIONS proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. Environmental Sciences Europe, 31 (1). doi: https://doi.org/10.1186/s12302-019-0239-4
- Pivovarov, A. A., Tischenko, A. P. (2006). Neravnovesnaya plazma: protsessy aktivatsii vody i vodnyh rastvorov. Dnepropetrovsk: PP «Aktsent».
- Mykolenko, S. Yu., Sokolov, V. Yu., Penkova, V. V. (2016). Study of technological aspects of grain bread production with using additional treatment of raw materials. Grain Products and Mixed Fodder’s, 64 (4), 10–15. doi: https://doi.org/10.15673/gpmf.v64i4.260
- Pivovarov, A., Mykolenko, S., Hez’, Y., Shcherbakov, S. (2018). Plasma-chemically activated water influence on staling and safety of sprouted bread. Food Science and Technology, 12 (2). doi: https://doi.org/10.15673/fst.v12i2.940
- Altenburger, R., Brack, W., Burgess, R. M., Busch, W., Escher, B. I., Focks, A. et. al. (2019). Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 31 (1). doi: https://doi.org/10.1186/s12302-019-0193-1
- Ramírez Orejel, J. C., Cano-Buendía, J. A. (2020). Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes, 8 (5), 534. doi: https://doi.org/10.3390/pr8050534
- Nikmaram, N., Rosentrater, K. A. (2019). Overview of Some Recent Advances in Improving Water and Energy Efficiencies in Food Processing Factories. Frontiers in Nutrition, 6. doi: https://doi.org/10.3389/fnut.2019.00020
- Bhagwat, V. R. (2019). Safety of Water Used in Food Production. Food Safety and Human Health, 219–247. doi: https://doi.org/10.1016/b978-0-12-816333-7.00009-6
- Mohammad Fakhrul Islam, S., Karim, Z. (2020). World’s Demand for Food and Water: The Consequences of Climate Change. Desalination - Challenges and Opportunities. doi: https://doi.org/10.5772/intechopen.85919
- Xiang, Q., Fan, L., Li, Y., Dong, S., Li, K., Bai, Y. (2020). A review on recent advances in plasma-activated water for food safety: current applications and future trends. Critical Reviews in Food Science and Nutrition, 1–20. doi: https://doi.org/10.1080/10408398.2020.1852173
- Wang, Q., Salvi, D. (2021). Recent progress in the application of plasma-activated water (PAW) for food decontamination. Current Opinion in Food Science, 42, 51–60. doi: https://doi.org/10.1016/j.cofs.2021.04.012
- Kaushik, N. K., Ghimire, B., Li, Y., Adhikari, M., Veerana, M., Kaushik, N. et. al. (2018). Biological and medical applications of plasma-activated media, water and solutions. Biological Chemistry, 400 (1), 39–62. doi: https://doi.org/10.1515/hsz-2018-0226
- Zhao, Y., Patange, A., Sun, D., Tiwari, B. (2020). Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 19 (6), 3951–3979. doi: https://doi.org/10.1111/1541-4337.12644
- Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X. et. al. (2020). Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53 (30), 303001. doi: https://doi.org/10.1088/1361-6463/ab81cf
- Chiappim, W., Sampaio, A. da G., Miranda, F., Fraga, M., Petraconi, G., da Silva Sobrinho, A. et. al. (2021). Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water, 13 (11), 1480. doi: https://doi.org/10.3390/w13111480
- Pivovarov, A., Mykolenko, S., Honcharova, O. (2017). Biotesting of plasma-chemically activated water with the use of hydrobionts. Eastern-European Journal of Enterprise Technologies, 4 (10 (88)), 44–50. doi: https://doi.org/10.15587/1729-4061.2017.107201
- Juin, S. K., Sarkar, S., Maitra, S., Nath, P. (2017). Effect of fish vitellogenin on the growth of juvenile catfish, Clarias gariepinus (Burchell, 1822). Aquaculture Reports, 7, 16–26. doi: https://doi.org/10.1016/j.aqrep.2017.05.001
- Harianto, E., Supriyono, E., Budiardi, T., Affandi, R., Hadiroseyani, Y. (2021). The effect of water level in vertical aquaculture systems on production performance, biochemistry, hematology, and histology of Anguilla bicolor bicolor. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-90912-1
- Zhao, Y. ‐M., Ojha, S., Burgess, C. M., Sun, D. ‐W., Tiwari, B. K. (2020). Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. Journal of Applied Microbiology, 129 (5), 1248–1260. doi: https://doi.org/10.1111/jam.14677
- Hozák, P., Scholtz, V., Khun, J., Mertová, D., Vaňková, E., Julák, J. (2018). Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Physics Reports, 44 (9), 799–804. doi: https://doi.org/10.1134/s1063780x18090040
- Choi, E. H., Uhm, H. S., Kaushik, N. K. (2021). Plasma bioscience and its application to medicine. AAPPS Bulletin, 31 (1). doi: https://doi.org/10.1007/s43673-021-00012-5
- Guo, L., Yao, Z., Yang, L., Zhang, H., Qi, Y., Gou, L. et. al. (2021). Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal, 421, 127742. doi: https://doi.org/10.1016/j.cej.2020.127742
- Gavahian, M., Khaneghah, A. M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60 (9), 1581–1592. doi: https://doi.org/10.1080/10408398.2019.1584600
- Zambon, Y., Contaldo, N., Laurita, R., Várallyay, E., Canel, A., Gherardi, M. et. al. (2020). Plasma activated water triggers plant defence responses. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-76247-3
- Herianto, S., Hou, C., Lin, C., Chen, H. (2020). Nonthermal plasma‐activated water: A comprehensive review of this new tool for enhanced food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 20 (1), 583–626. doi: https://doi.org/10.1111/1541-4337.12667
- Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36 (6), 615–626. doi: https://doi.org/10.1016/j.tibtech.2017.11.001
- Rezaei, F., Vanraes, P., Nikiforov, A., Morent, R., De Geyter, N. (2019). Applications of Plasma-Liquid Systems: A Review. Materials, 12 (17), 2751. doi: https://doi.org/10.3390/ma12172751
- Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D., Gadre, S. R. (2001). Structure and Stability of Water Clusters (H2O)n, n = 8−20: An Ab Initio Investigation. The Journal of Physical Chemistry A, 105(46), 10525–10537. doi: https://doi.org/10.1021/jp013141b
- Larson, M. A., Garside, J. (1986). Solute clustering in supersaturated solutions. Chemical Engineering Science, 41 (5), 1285–1289. doi: https://doi.org/10.1016/0009-2509(86)87101-9
- Goncharuk, V. V. (2014). Water Clusters. Drinking Water, 51–103. doi: https://doi.org/10.1007/978-3-319-04334-0_3
- Xu, D., Wang, S., Li, B., Qi, M., Feng, R., Li, Q. et. al. (2020). Effects of Plasma-Activated Water on Skin Wound Healing in Mice. Microorganisms, 8 (7), 1091. doi: https://doi.org/10.3390/microorganisms8071091
- Everson, C. A. (2005). Clinical assessment of blood leukocytes, serum cytokines, and serum immunoglobulins as responses to sleep deprivation in laboratory rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289 (4), R1054–R1063. doi: https://doi.org/10.1152/ajpregu.00021.2005
- Gordon, S., Plüddemann, A. (2019). The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.01893
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Svitlana Mykolenko, Olexandr Pivovarov, Valentyn Yefimov, Nataliia Sova, Dmytro Tymchak
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.