Effect of treatment mode on fatigue resistance of material and thickness of the hardened surface

Authors

  • Александр Владимирович Желдубовский Institute of Mechanics. S.P. Timoshenko NAN Ukraine 03057, Kyiv, str. P. Nesterova, 3, Ukraine https://orcid.org/0000-0002-2681-4796
  • Александр Тимофеевич Сердитов Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37, Ukraine https://orcid.org/0000-0002-4713-9806
  • Юрий Валентинович Ключников Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37, Ukraine https://orcid.org/0000-0001-5226-1331
  • Павел Васильевич Кондрашев National Technical University of Ukraine «Kiev Polytechnic Institute» Pr. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7428-710X
  • Глеб Сергеевич Моисеенко Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37, Ukraine https://orcid.org/0000-0003-2783-9220

DOI:

https://doi.org/10.15587/1729-4061.2014.24659

Keywords:

failure of the sample, kinetics of the layer, failure conditions, and realized and residual life, microhardness

Abstract

The vast majority of modern machine parts operate under cyclic loads, leading to, as a rule, failure, caused by the material fatigue. In this regard, the fatigue resistance of materials is one of the most important criteria for evaluating the structural strength of many parts of engineering structures. It is important that the process of exhaustion of cyclic life of metals, even at uniform stress state proceeds not uniformly in terms of volume of metal, but is initiated and develops more intensively in its surface layer. Under non-uniform stress state, role of the surface increases in connection with the presence of stress gradient. That's why, the most profound and systematic summarization of works, carried out in this direction, is aimed at performing a comprehensive analysis of changes in the properties of the surface layer of materials under active loading. However, investigated patterns of the surface microhardness change in the process of fatigue are usually qualitative and informative in nature. However, it should be noted that it is relevant to conduct studies, intended for obtaining quantitative estimates of the mentioned laws in order to develop fatigue failure criteria as a basis for improving calculation methods. This, in turn, requires developing a methodology for studying the surface layer behavior features and selecting the appropriate instrumental methods and tools. Analysis of a priori information indicates the need to investigate the microhardness, taking into account formation laws of the hardened surface layer, using different technological modes of surface treatment of metallic materials. In the present paper, the microhardness measuring method, characterized by a fairly high level of reproducibility of the obtained results and their experimentally justified correlation with the mechanical properties of the material is used. The developed method allows to determine the parameters of realized and residual life of the material.

Thus, the research results, presented in the paper are of both scientific and practical interest. The authors have proposed the microhardness measuring methodology, characterized by a high level of reproducibility of the obtained results, which allows to determine the parameters of realized and the residual life of the material.

Author Biographies

Александр Владимирович Желдубовский, Institute of Mechanics. S.P. Timoshenko NAN Ukraine 03057, Kyiv, str. P. Nesterova, 3

Kandydat tekhnichnykh nauk, starshyi nauchnyi sotrudnik

Department of Mechanics of creep

Александр Тимофеевич Сердитов, Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37

Kandydat tekhnichnykh nauk, dotsent

Department of Laser Technology and Physics and engineering technology

Юрий Валентинович Ключников, Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37

Kandydat tekhnichnykh nauk, dotsent

Department of Laser Technology and Physics and engineering technology

Павел Васильевич Кондрашев, National Technical University of Ukraine «Kiev Polytechnic Institute» Pr. Peremogy, 37, Kyiv, Ukraine, 03056

Kandydat tekhnichnykh nauk, dotsent

Department of laser technology and physico-technical technology

Глеб Сергеевич Моисеенко, Mechanical Engineering Institute National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, etc., 37

Student group ML-21

Laser Technology and Department of Physical and Technical technologies

References

  1. Tresa M. Pollock. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties [Текст] / Tresa M. Pollock, Ann Arbor, Sammy Tin // Journal of Propulsion and Power. - 2006. - №2. - С. 361-374.
  2. F. W. Wang. Why does the Initial Fatigue Crack not Nucleate in the Region between Two Neighborly Located Holes in an Aluminum-Alloy Strip [Текст] / F. W. Wang, Y. H. Chen // Contemporary Engineering Sciences. - 2009. - №11. - С. 507 - 516.
  3. Risitano, A. Cumulative damage by Miner’s Rule and by Energetic Analisys [Текст] / Risitano, A., Corallo, D., Risitano, G. // Struct Durability Health Monitor. - 2012. - №2. - С. 91-109.
  4. Risitano, A. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters [Текст] / Risitano, A., Risitano, G. // Int J Fatigue. - 2013. - №48. - С. 214-222.
  5. Желдубовский А. В. Метод оценки остаточной долговечности материала в условиях длительного статического нагружения [Текст] / А. В. Желюубовский, А. Т. Сердитов и др. // Восточно-Европейский журнал передовых технологий. - 2013. - №63. - С. 8-12.
  6. Jin-Sung, Lee. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank [Текст] / Jin- Sung Lee, Won-Hyo You, Chang-Hyuk Yoo, Kyung-Su Kim, Yooil Kim // Int. J. Nav. Archit. Ocean Eng. - 2013. - (5). - С. 580-597.
  7. Ergun, Ate. Usability of Polymer Concrete as a Machine-Making Material Regarding Fatigue Strength [Текст] / Ergun Ate, Mahmut Nedim Gerger // World Journal of Engineering and Technology. - 2013 (1). - С. 59-64.
  8. Желдубовский А. В. Оценка запаса прочности деталей машин, подверженных асимметричному нагружению [Текст] / А. В. Желюубовский, А. Д. Погребняк и др. // Восточно-Европейский журнал передовых технологий. - 2013. - Т. 6, №7(66). - С. 24-27.
  9. Желдубовский, A. B. Об одном подходе к оценке поврежденности конструкционных материалов при многоцикловом на¬гружении [Текст] / А. В. Желдубовский, А. Д. Погребняк // Вибрации в технике и технологиях. – 2001. – №5. – С. 25–28.
  10. Глазов, В. М. Микротвёрдость металлов [Текст] / В. М. Глазов, В. Н. Вигродович. – М.: Металлургия, 1969. – 248 с.
  11. Работнов, Ю. Н. Ползучесть элементов конструкций [Текст] / Ю. Н. Работнов. – М.: Наука, 1966. – 752 с.
  12. Качанов, Л. М. Основы механики разрушения [Текст] / Л. М. Качанов. – М.: Наука, 1974. – 312 с.
  13. Lemaitre, L. How to use damage mechanics [Text] / L. Lemaitre // Nuclear Engineering and Design. – 1984. – Vol. 80. – P. 233–245.
  14. Tresa, M. Pollock, Ann, Arbor, Sammy, Tin (2006). Nickel-Based Su¬peralloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties. Journal of Propulsion and Power, (2), 361-374.
  15. Wang, F. W., Chen, Y. H. (2009). Why does the Initial Fatigue Crack not Nucleate in the Region between Two Neighborly Located Holes in an Aluminum-Alloy Strip. Contemporary Engineering Sciences, (11), 507-516.
  16. Risitano, A., Corallo, D., Risitano, G. (2012). Cumulative damage by Miner’s Rule and by Energetic Analisys. Struct Durability Health Monitor, (2), 91-109.
  17. Risitano, A., Risitano, G. (2013). Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters. Int J Fatigue, (48), 214-222.
  18. Geldebovskii, A. V., Serditov, A. T., Kliuchnikov, Yu. V., Kondrashev, P. V., Durnitskii, D. A. (2013). Method for estimating the re¬sidual life of the material in long-term static loading. East European Journal of advanced technology, (63), 8-12.
  19. Jin-Sung, Lee, Won-Hyo, You, Chang-Hyuk, Yoo, Kyung-Su, Kim, Yooil, Kim (2013). An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank. Int. J. Nav. Archit. Ocean Eng, (5), 580-597.
  20. Ergun, Ate, Mahmut, Nedim Gerger. (2013). Usability of Polymer Concrete as a Machine-Making Material Regarding Fatigue Strength. World Journal of Engineering and Technology, (1), 59-64.
  21. Geldebovskii, A. V., Pogrebniak, A. D., Regulskii, M. N., Serdi-tov, A. T., Kliuchnikov, Yu. V., Kondrashev, P. V. (2013). Evaluation of safety of machine parts exposed to asymmetric loading. Eastertn- European Journal of Enterprise Technologies, 6(7(66)), 24-27.
  22. Geldebovskii, A. V., Pogrebniak, A. D. (2001). An approach to the assessment of the damage in structural materials multicyclic loading. Vibration in engineering and technology, (5), 25-28.
  23. Glazov, V. M., Vigrodovich, V. N. (1969). Microhardness metals. Moscow, USSR: Metallurgy, 248.
  24. Rabotnov, Yu. N. (1966). Creep of Structural Elements. Moscow, USSR: Engineering, 752.
  25. Kachanov, L. M. (1974). Fundamentals of Fracture Mechanics. Moscow, USSR: Engineering, 312.
  26. Lemaitre, L. (1984). How to use damage mechanics. Nuclear Engi¬neering and Design, 80, 233–245.

Published

2014-06-22

How to Cite

Желдубовский, А. В., Сердитов, А. Т., Ключников, Ю. В., Кондрашев, П. В., & Моисеенко, Г. С. (2014). Effect of treatment mode on fatigue resistance of material and thickness of the hardened surface. Eastern-European Journal of Enterprise Technologies, 3(5(69), 10–14. https://doi.org/10.15587/1729-4061.2014.24659