Increasing quality of the wireless module for monitoring and supervision of sound series of the expanded purpose

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.247658

Keywords:

computerized system, modular structure, reception algorithm, software, system testing

Abstract

The sound series are considered as an addition to visual and thermal imaging information flows when using computerized monitoring systems (CS). A minimum complete structure of spaced microphones for collecting data on sound rows, which is suitable for calibrating, isolating and transmitting data on sound anomalies (SA), is proposed.  Duplication of the data transmission channel by wire and Wi-Fi module for recording and determining the type and coordinates of the SA is provided.

An experimental receiving module has been assembled, which includes microphones, amplifiers and signals matching boards for digital and analog forms, an ARDUINO UNO WIFI REV2 controller with an integrated Wi-Fi module. It is presented that its addition with a personal computer and a smartphone with the Android operating system forms a CS for remote wireless control of the course of the experimental analysis of sound series. It has been confirmed experimentally that its structure is minimally complete. An algorithm was developed and a software package was written in C/C++ languages. It is shown that the number of microphones is selected from the conditions of the problem from 1 to 5, but their number is limited to five digital inputs of the ARDUINO UNO WIFI REV2 board. A wave representation of the law of temporal changes in intensity and the integral norm of SA is applied. The possibilities of calibrating all data of sound series in analog and digital form are demonstrated. The article presents the suitability of testing the algorithms for determining the phases of echograms from time series data, containing SAs of different origins and recorded by three different microphones. The effect of connecting a Wi-Fi module on reducing the voltage drop by 0.5–1 V is shown. The necessity of an additional registration condition for all microphones is demonstrated. The software interfaces for the calibration of the receiving module and the operation of the mobile application have been developed.

Author Biographies

Alexandr Trunov, Petro Mohyla Black Sea National University

Doctor of Technical Science, Doctor of Philosophy, Professor

Department of Automation and Computer-Integrated Technologies

Zhan Byelozyorov, Petro Mohyla Black Sea National University

Pоstgraduate Student

Department of Automation and Computer-Integrated Technologies

References

  1. Lo, K. W., Ferguson, B. G. (2015). Acoustic ranging of small arms fire using a single sensor node collocated with the target. The Journal of the Acoustical Society of America, 137 (6), EL422–EL428. doi: http://doi.org/10.1121/1.4921447
  2. Chen, J. C., Yao, K., Hudson, R. E. (2003). Acoustic Source Localization and Beamforming: Theory and Practice. EURASIP Journal on Advances in Signal Processing, 4. doi: http://doi.org/10.1155/s1110865703212038
  3. Danyk, Yu. H., Buhaiov, M. V. (2015). Analiz efektyvnosti vyiavlennia taktychnykh bezpilotnykh litalnykh aparativ pasyvnymy ta aktyvnymy zasobamy sposterezhennia. Zbirnyk naukovykh prats ZhVI DUT, 10, 5–20.
  4. Oleinikov, A. N., Nosulko, I. V. (2019). Features of construction of acoustic reconnaissance equipment with their small overall dimensions. Radiotekhnika, 4 (199), 142–146. doi: http://doi.org/10.30837/rt.2019.4.199.17
  5. Bortsov, V. V., Boiko, A. P., Vynar, A. A., Zhuravska, I. M., Kulakovska, I. V.; Kotlyka, S. V. (Ed.) (2021). Prostorove rozmishchennia mikrokontrolernoi systemy pasyvnoi akustychnoi lokatsii na osnovi platonovykh til. Na shliakhu do Industrii 4.0: informatsiini tekhnolohii, modeliuvannia, shtuchnyi intelekt, avtomatyzatsiia. Odesa: Astroprynt, 97–109.
  6. Seah, Ch. E., Hwang, I. (2009). Stochastic Linear Hybrid Systems: Modeling, Estimation, and Application in Air Traffic Control. IEEE Transactions on Control Systems Technology, 17 (3), 563–575. doi: http://doi.org/10.1109/tcst.2008.2001377
  7. Camacho, E. F., Ramirez, D. R., Limon, D., Muñoz de la Peña, D., Alamo, T. (2010). Model predictive control techniques for hybrid systems. Annual Reviews in Control, 34 (1), 21–31. doi: http://doi.org/10.1016/j.arcontrol.2010.02.002
  8. SPOTLITE – Electro-Optical Small-Arms Fire Detection System RAFAEL (2006). Defense Update. Available at: https://defense-update.com/20060726_spotlite.html Last accessed: 11.11.2017
  9. Remotely Operated Weapon stations at AUSA 06 (2006). Defense Update. Available at: https://defense-update.com/20061030_ausa06rws.html Last accessed: 30.05.2021
  10. "PILAR – ground version". Available at: http://metravib.Acoemgroup.com/defence/catalog/PILAR-GROUND-VERSION Last accessed: 11.11.2017
  11. "Boomerang III". Available at: https://www.raytheon.com/capabilities/products/boomerang/ Last accessed: 21.10.2017
  12. Kakaia tekhnika pozvolit vyigrat voinu s terroristami. Available at: http://www.autoconsulting.com.ua/article.php?sid=30908 Last accessed: 13.01.2018
  13. Nguyen, L., Valls Miro, J., Qiu, X. (2019). Multilevel B-Splines-Based Learning Approach for Sound Source Localization. IEEE Sensors Journal, 19 (10), 3871–3881. doi: http://doi.org/10.1109/jsen.2019.2895854
  14. Döbler, D., Heilmann, G., Ohm, M. (2010). Automatic detection of microphone coordinates. 3rd Berlin Beamforming Conference. Available at: http://www.bebec.eu/Downloads/BeBeC2010/Papers/BeBeC-2010-15.pdf
  15. Yong, J., Wang, D.-Y. (2015). Impact of noise on hearing in the military. Military Medical Research, 2 (1), 6. doi: http://doi.org/10.1186/s40779-015-0034-5
  16. Rascon, C., Meza, I. (2017). Localization of sound sources in robotics: A review. Robotics and Autonomous Systems, 96, 184–210. doi: http://doi.org/10.1016/j.robot.2017.07.011
  17. Yang, X., Xing, H., Ji, X. (2018). Sound Source Omnidirectional Positioning Calibration Method Based on Microphone Observation Angle. Complexity, 2018, 1–15. doi: http://doi.org/10.1155/2018/2317853
  18. Palahin, O. V., Vasiukhin, M. I., Kasim, A. M., Ivanyk, Yu. Yu., Dolynnyi, V. V. (2015). Metody ta zasoby pobudovy dynamichnykh stsenariiv u navihatsiinykh heoinformatsiinykh systemakh. Perspektyvy rozvytku avtomatyzovanykh system upravlinnia viiskamy ta heoinformatsiinykh system. Lviv: ASV, 185–200.
  19. Trunov, A., Byelozyorov, Z. (2020). Forming a method for determining the coordinates of sound anomalies based on data from a computerized microphone system. Eastern-European Journal of Enterprise Technologies, 2 (4 (104)), 38–50. doi: http://doi.org/10.15587/1729-4061.2020.201103
  20. Kryvoruchko, A. V. (2012). Ohliad ta porivnialnyi analiz tekhnichnykh system vyiavlennia pozytsii snaipera. Suchasna spetsialna tekhnika, 3, 75–81. Available at: http://nbuv.gov.ua/UJRN/sstt_2012_3_14
  21. Bilenko, O. I., Hunko, H. L. (2015). Vyznachennia parametriv zvuku postrilu, yaki vplyvaiut na vykonannia spetsyfichnykh vohnevykh zavdan sylamy bezpeky ta pidliahatymut rehlamentatsii. Perspektyvy rozvytku ozbroiennia ta viiskovoi tekhniky sukhoputnykh viisk. Lviv, 14–15.
  22. Engel, J., Sturm, J., Cremers, D. (2012). Camera-based navigation of a low-cost quadrocopter. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: http://doi.org/10.1109/iros.2012.6385458
  23. Zhuravska, I., Kulakovska, I., Musiyenko, M. (2018). Development of a method for determining the area of operation of unmanned vehicles formation by using the graph theory. Eastern-European Journal of Enterprise Technologies, 2 (3 (92)), 4–12. doi: http://doi.org/10.15587/1729-4061.2018.128745
  24. Trounov, A. N. (1984). Аpplication of sensory modules for adaptive robots. Robot Vision and Sensory Control. IFS Publication, 285–294.
  25. Trunov, A., Malcheniuk, A. (2018). Recurrent network as a tool for calibration in automated systems and interactive simulators. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 54–60. doi: http://doi.org/10.15587/1729-4061.2018.126498
  26. Trunov, A.; Bilski, P., Guerriero, F. (Eds.) (2017). Recurrent Approximation in the Tasks of the Neural Network Synthesis for the Control of Process of Phototherapy. Computer Systems for Healthcare. Gistrup: River Publishers, 213–248.
  27. Trunov, A. (2016). Recurrent approximation as the tool for expansion of functions and modes of operation of neural network. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 41–48. doi: http://doi.org/10.15587/1729-4061.2016.81298
  28. Dronyuk, I., Moiseienko, I., Greguš ml., J. (2019). Analysis of Creative Industries Activities in Europеan Union Countries. Procedia Computer Science, 160, 479–484. doi: http://doi.org/10.1016/j.procs.2019.11.061
  29. Dronyuk, I., Fedevych, O. (2017). Traffic Flows Ateb-Prediction Method with Fluctuation Modeling Using Dirac Functions. Communications in Computer and Information Science, 3–13. doi: http://doi.org/10.1007/978-3-319-59767-6_1
  30. Trunov, A., Beglytsia, V., Gryshchenko, G., Ziuzin, V., Koshovyi, V. (2021). Methods and tools of formation of general indexes for automation of devices in rehabilitative medicine for post-stroke patients. Eastern-European Journal of Enterprise Technologies, 4 (2 (112)), 35–46. doi: http://doi.org/10.15587/1729-4061.2021.239288
  31. Hryshchuk, R. V., Hordiienko, Yu. O., Amirov, A. R., Solopii, I. A. (2017). Analiz akustychnykh zasobiv vyiavlennia postrilu zi striletskoi zbroi ta yikh klasyfikatsiia. Suchasna spetsialna tekhnika, 3 (50), 103–112.
  32. Kozeruk, S. O., Maznichenko, D. V. (2017). Determining of source’s coordinates of shot by mean of acoustic waves. Electronics and Communications, 22 (1), 45–49. doi: http://doi.org/10.20535/2312-1807.2017.22.1.79761
  33. Solopii, I. A., Solonets, O. I., Hordiienko, Yu. O., Tkach, A. O. (2021). Determination of the Direction to the Enemy Firing Position by a Group of Sound Receivers on the Result of the Muzzle Blast Processing. Scientific Works of Kharkiv National Air Force University, 1 (67), 89–94. doi: http://doi.org/10.30748/zhups.2021.67.12
  34. Trunov, A. (2019). Diagnostic of Inflammation and Choice of Therapy’ Alternatives in Accordance with Several Standards. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT), 182–186. doi: http://doi.org/10.1109/aiact.2019.8847919
  35. Belozorov, Zh. O., Trunov, O. M. (2021). Kompiuterna prohrama. Signal_locator3.ino. Svidotstvo pro reiestratsiiu avtorskoho prava na tvir No. 108024. 20.09.2021.

Downloads

Published

2021-12-21

How to Cite

Trunov, A., & Byelozyorov, Z. (2021). Increasing quality of the wireless module for monitoring and supervision of sound series of the expanded purpose . Eastern-European Journal of Enterprise Technologies, 6(5 (114), 28–40. https://doi.org/10.15587/1729-4061.2021.247658

Issue

Section

Applied physics