Devising the technology for localizing environmental pollution during fires at spontaneous landfills and testing it in the laboratory

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.248252

Keywords:

solid household waste, flue gases, adsorption suspension, anti-filtration screen

Abstract

This paper reports an analysis of current issues related to storing solid household waste, and, specifically, the problem of environmental pollution when unsorted solid household waste (SHW) is ignited. A technology has been developed to improve environmental safety and ensure a reduction in the anthropogenic load on the atmosphere, hydrosphere, and lithosphere in the event of fires at the sites of solid waste storage. The operation of the proposed equipment, taking into consideration all the provided operating modes and additional options, is energy-saving and automated (or semi-automatic), which makes it especially relevant under modern conditions. The technology significantly improves the efficiency of the processes to eliminate the ignition of SHW and localize their environmental consequences for the territories adjacent to landfills.

Laboratory tests were carried out, which proved the effectiveness of practical application for the designed equipment of a new environmentally active adsorption mixture for the purpose of cleaning the waste filtrate, as well as its use for the formation of an anti-filtration screen in the mound of SHW. Experiments have shown that the tested sample of the aqueous suspension of the proposed environmentally active mixture adsorbs calcium (by 92 %), overall iron (by 91 %), overall phosphorus (by 75 %), zinc (by 31 %), and ammonium (by 19 %). This leads to a decrease in the overall toxicity of the solution and indicates the possibility of improving the environmental safety of waste fires when operating the proposed technical solution by purifying the filtrate released during fires in landfills.

The reported results, specifically, the technology for localizing the environmental consequences of uncontrolled waste ignition could be used in the process of modernizing the technical support for sanitary treatment schemes in urban areas.

Author Biographies

Ivan Bondarenko, Public Organization "Regional Center of Scientific and Technical Development"

Director

Igor Dudar, Vinnytsia National Technical University

Doctor of Technical Sciences, Professor

Department of Construction, Municipal Economy and Architecture

Olha Yavorovska, Vinnytsia National Technical University

PhD

Department of Construction, Municipal Economy and Architecture

Olha Ziuz, The Committee of the Verkhovna Rada of Ukraine on Environmental Policy and Utilization of Natural Resources

Specialist of the Secretariat

Sergii Boichenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Ecology

Ihor Kuberskyi, LLC "SOBIHRUP"

Postgraduate Student, Director

Iryna Shkilniuk, National Aviation University

PhD

Ukrainian Scientific-Research and Training Center for Chemmotology and Certification of Lubricants and Industrial Fluids

Bohdana Komarysta, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Mathematical Methods of System Analysis

Educational and Scientific Complex «Institute of Applied Systems Analysis»

Iryna Dzhygyrey, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Educational and Scientific Complex «Institute of Applied Systems Analysis»

Vladyslav Bendiuh, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Mathematical Methods of System Analysis

References

  1. Popelo, O., Tulchynska, S., Marhasova, V., Ivanova, N., Samiilenko, H. (2021). An innovative approach to determine the sustainable development of regions by harmonization of the economic, social and environmental components. Journal of Management Information and Decision Sciences, 24 (S4), 1–9.
  2. Boichenko, S. V., Leida, K., Ivanchenko, O. V. (2016). Ekolohistyka, utylizatsiia ta retsyklinh transportnykh zasobiv: tendentsiyi ta perspektyvy rozvytku. Naukoiemni tekhnolohiyi, 2 (30), 221–227.
  3. Boichenko, S. V., Lejda, K. (2015). European experience and perspectives of systems of utilization and recycling of transport means. Visnyk Natsionalnoho transportnoho universytetu, 2 (32).
  4. Boichenko, S. V., Ivanchenko, O. V., Iakovlieva, A. V. (2017). Recycling and utilization of aviation engineering: the global trends and peculiarities of introduction. Science-based technologies, 2 (34), 140–149. doi: https://doi.org/10.18372/2310-5461.34.11612
  5. Boychenko, S., Shkilnuk, I., Turchak, V. (2008). The problems of biopollution with jet fuels and the way of achieving solution. Transport, 23 (3), 253–257. doi: https://doi.org/10.3846/1648-4142.2008.23.253-257
  6. Shkilniuk, I., Boichenko, S. (2020). Biological Risk of Aviation Fuel Supply. Studies in Systems, Decision and Control, 179–199. doi: https://doi.org/10.1007/978-3-030-48583-2_12
  7. Mar'in, V. V., Risnik, V. V., Pisarenko, V. N., Timofeev, V. B., Shishov, V. P. (2000). O probleme bytovyh othodov megapolisov i putyah ee resheniya. Gorniy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), 10.
  8. Kutniashenko, O., Smoliaga, V., Litvinova, T. (2016). Improving the efficiency of household waste recycling by pre-preparation of their dispersed fraction. Polytechnic magazine Metal. Journal - Metallurgical and Mining Industry, 8, 6–14.
  9. Kurilenko, V. V., Osmolovskaya, N. G., Maksimova, D. A., Kuchaeva, L. N. (2015). Geo-ecological characteristics of kronstadt and assessment of its territory pollution by heavy metals. Vestnik SPbGU, 2, 107–124.
  10. Podlipskiy, I. I. (2013). Geoekologicheskaya otsenka prilegayuschih territoriy poligona bytovyh othodov (g. Pitkyaranta, Respublika Kareliya). Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle, 2, 48–56.
  11. Chrysikou, L., Gemenetzis, P., Kouras, A., Manoli, E., Terzi, E., Samara, C. (2008). Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environment International, 34 (2), 210–225. doi: https://doi.org/10.1016/j.envint.2007.08.007
  12. Kazantseva, L. A., Sippel, A. E. (2018). Environmental and fire danger of a solid waste landfill within the territory of the Sorokinsky raion (the Tyumen oblast). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 5, 22–26. Available at: https://cyberleninka.ru/article/n/ekologicheskaya-i-pozharnaya-opasnost-poligona-tverdyh-bytovyh-othodov-na-territorii-sorokinskogo-rayona-tyumenskoy-oblasti
  13. Cocean, I., Diaconu, M., Cocean, A., Postolachi, C., Gurlui, S. (2020). Landfill Waste Fire Effects Over Town Areas Under Rainwaters. IOP Conference Series: Materials Science and Engineering, 877, 012048. doi: https://doi.org/10.1088/1757-899x/877/1/012048
  14. Pan, Y., Yang, L., Zhou, J., Liu, J., Qian, G., Ohtsuka, N. et. al. (2013). Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere, 92 (7), 765–771. doi: https://doi.org/10.1016/j.chemosphere.2013.04.003
  15. Dos Muchangos, L. S., Tokai, A. (2020). Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique – the case of Hulene dumpsite. Scientific African, 10, e00638. doi: https://doi.org/10.1016/j.sciaf.2020.e00638
  16. Wang, K., Nakakubo, T. (2020). Comparative assessment of waste disposal systems and technologies with regard to greenhouse gas emissions: A case study of municipal solid waste treatment options in China. Journal of Cleaner Production, 260, 120827. doi: https://doi.org/10.1016/j.jclepro.2020.120827
  17. Weichenthal, S., Van Rijswijk, D., Kulka, R., You, H., Van Ryswyk, K., Willey, J. et. al. (2015). The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environmental Research, 142, 46–50. doi: https://doi.org/10.1016/j.envres.2015.06.018
  18. Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M. et. al. (2006). The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences, 93 (2), 223–241. doi: https://doi.org/10.1093/toxsci/kfl055
  19. Faqi, A. S., Dalsenter, P. R., Merker, H.-J., Chahoud, I. (1998). Reproductive Toxicity and Tissue Concentrations of Low Doses of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Male Offspring Rats Exposed Throughout Pregnancy and Lactation. Toxicology and Applied Pharmacology, 150 (2), 383–392. doi: https://doi.org/10.1006/taap.1998.8433
  20. Wiwanitkit, V. (2016). Thai waste landfill site fire crisis, particular matter 10, and risk of lung cancer. Journal of Cancer Research and Therapeutics, 12 (2), 1088. doi: https://doi.org/10.4103/0973-1482.172120
  21. Vassiliadou, I., Papadopoulos, A., Costopoulou, D., Vasiliadou, S., Christoforou, S., Leondiadis, L. (2009). Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere, 74 (7), 879–884. doi: https://doi.org/10.1016/j.chemosphere.2008.11.016
  22. Cunliffe, A. M., Williams, P. T. (2009). De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Management, 29 (2), 739–748. doi: https://doi.org/10.1016/j.wasman.2008.04.004
  23. Wang, G., Fan, Z., Wu, D., Qin, L., Zhang, G., Gao, C., Meng, Q. (2014). Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 349, 136–144. doi: https://doi.org/10.1016/j.desal.2014.06.030
  24. Cabral, M., Garçon, G., Touré, A., Bah, F., Dewaele, D., Bouhsina, S. et. al. (2021). Renal impairment assessment on adults living nearby a landfill: Early kidney dysfunction biomarkers linked to the environmental exposure to heavy metals. Toxicology Reports, 8, 386–394. doi: https://doi.org/10.1016/j.toxrep.2021.02.009
  25. Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567–S2574. doi: https://doi.org/10.1016/j.arabjc.2013.09.031
  26. Anna Tałałaj, I., Bartkowska, I., Biedka, P. (2021). Treatment of young and stabilized landfill leachate by integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process. Environmental Nanotechnology, Monitoring & Management, 16, 100502. doi: https://doi.org/10.1016/j.enmm.2021.100502
  27. Kumar, G., Reddy, K. R., McDougall, J. (2020). Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Computers and Geotechnics, 128, 103836. doi: https://doi.org/10.1016/j.compgeo.2020.103836
  28. Fiorineschi, L., Frillici, F. S., Rotini, F. (2018). Enhancing functional decomposition and morphology with TRIZ: Literature review. Computers in Industry, 94, 1–15. doi: https://doi.org/10.1016/j.compind.2017.09.004
  29. MVV No. 081/12-0317-06. Poverkhnevi, pidzemni ta zvorotni vody. Metodyka vykonannia vymiriuvan vodnevoho pokaznyka (rN) elektrometrychnym metodom. Available at: https://budstandart.ua/normativ-document.html?id_doc=76469
  30. MVV No. 081/12-0106-03. Poverkhnevi, pidzemni ta zvorotni vody. Metodyka vykonannia vymiriuvan masovoi kontsentratsiyi amoniy-ioniv fotokolorymetrychnym metodom z reaktyvom Neslera. Zi zminoiu No. 1. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76427
  31. MVV No. 081/12-0647-09. Metodyka vykonannia vymiriuvan masovoi kontsentratsiyi KhSK u zvorotnykh, poverkhnevykh i pidzemnykh vodakh fotokolorymetrychnym metodom u diapazoni vid 4 mhO/dm3 do 10000 mhO/dm3 vkliuchno (z vykorystanniam testovoi sumishi reahentiv na vyznachenyi diapazon vymiriuvannia KhSK) (tilky dlia fotometriv abo spektrofotometriv typu PhotoLab Spectral, Spectroquant NOVA, Spektroflex, DR abo analohichnykh). Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76576
  32. Bondarenko, I. V., Kutniashenko, O. I. (2019). Pat. No. 139374 UA. Systema dlia skorochennia ekolohichnoho zabrudnennia navkolyshnoho seredovyshcha pry pozhezhakh na polihonakh TPV ta v umovakh stykhiynykh smittiezvalyshch. No. a201902114; declareted: 01.03.2019; published: 10.01.2019, Bul. No. 1.
  33. Bondarenko, I. V. (2012). Pat. No. 103811 UA. Snariad dlia ekolohichnoho ochyshchennia atmosfernoho povitria. No. a201201731; declareted: 16.02.2012; published: 25.11.2013. Bul. No. 22.
  34. Bondarenko, I. V. (2013). Pat. No. 111828 UA. Drobylnyi ahrehat z hravitatsiino-pnevmatychnym elektropryvodom. No. a201304265; declareted: 05.04.2013; published: 24.06.2016, Bul. No. 12.
  35. Kieush, L., Schenk, J., Pfeiffer, A., Koveria, A., Rantitsch, G., Hopfinger, H. (2022). Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties. Fuel, 309, 122151. doi: https://doi.org/10.1016/j.fuel.2021.122151

Downloads

Published

2021-12-29

How to Cite

Bondarenko, I., Dudar, I., Yavorovska, O., Ziuz, O., Boichenko, S., Kuberskyi, I., Shkilniuk, I., Komarysta, B., Dzhygyrey, I., & Bendiuh, V. (2021). Devising the technology for localizing environmental pollution during fires at spontaneous landfills and testing it in the laboratory. Eastern-European Journal of Enterprise Technologies, 6(10 (114), 40–48. https://doi.org/10.15587/1729-4061.2021.248252