Devising the technology for localizing environmental pollution during fires at spontaneous landfills and testing it in the laboratory
DOI:
https://doi.org/10.15587/1729-4061.2021.248252Keywords:
solid household waste, flue gases, adsorption suspension, anti-filtration screenAbstract
This paper reports an analysis of current issues related to storing solid household waste, and, specifically, the problem of environmental pollution when unsorted solid household waste (SHW) is ignited. A technology has been developed to improve environmental safety and ensure a reduction in the anthropogenic load on the atmosphere, hydrosphere, and lithosphere in the event of fires at the sites of solid waste storage. The operation of the proposed equipment, taking into consideration all the provided operating modes and additional options, is energy-saving and automated (or semi-automatic), which makes it especially relevant under modern conditions. The technology significantly improves the efficiency of the processes to eliminate the ignition of SHW and localize their environmental consequences for the territories adjacent to landfills.
Laboratory tests were carried out, which proved the effectiveness of practical application for the designed equipment of a new environmentally active adsorption mixture for the purpose of cleaning the waste filtrate, as well as its use for the formation of an anti-filtration screen in the mound of SHW. Experiments have shown that the tested sample of the aqueous suspension of the proposed environmentally active mixture adsorbs calcium (by 92 %), overall iron (by 91 %), overall phosphorus (by 75 %), zinc (by 31 %), and ammonium (by 19 %). This leads to a decrease in the overall toxicity of the solution and indicates the possibility of improving the environmental safety of waste fires when operating the proposed technical solution by purifying the filtrate released during fires in landfills.
The reported results, specifically, the technology for localizing the environmental consequences of uncontrolled waste ignition could be used in the process of modernizing the technical support for sanitary treatment schemes in urban areas.
References
- Popelo, O., Tulchynska, S., Marhasova, V., Ivanova, N., Samiilenko, H. (2021). An innovative approach to determine the sustainable development of regions by harmonization of the economic, social and environmental components. Journal of Management Information and Decision Sciences, 24 (S4), 1–9.
- Boichenko, S. V., Leida, K., Ivanchenko, O. V. (2016). Ekolohistyka, utylizatsiia ta retsyklinh transportnykh zasobiv: tendentsiyi ta perspektyvy rozvytku. Naukoiemni tekhnolohiyi, 2 (30), 221–227.
- Boichenko, S. V., Lejda, K. (2015). European experience and perspectives of systems of utilization and recycling of transport means. Visnyk Natsionalnoho transportnoho universytetu, 2 (32).
- Boichenko, S. V., Ivanchenko, O. V., Iakovlieva, A. V. (2017). Recycling and utilization of aviation engineering: the global trends and peculiarities of introduction. Science-based technologies, 2 (34), 140–149. doi: https://doi.org/10.18372/2310-5461.34.11612
- Boychenko, S., Shkilnuk, I., Turchak, V. (2008). The problems of biopollution with jet fuels and the way of achieving solution. Transport, 23 (3), 253–257. doi: https://doi.org/10.3846/1648-4142.2008.23.253-257
- Shkilniuk, I., Boichenko, S. (2020). Biological Risk of Aviation Fuel Supply. Studies in Systems, Decision and Control, 179–199. doi: https://doi.org/10.1007/978-3-030-48583-2_12
- Mar'in, V. V., Risnik, V. V., Pisarenko, V. N., Timofeev, V. B., Shishov, V. P. (2000). O probleme bytovyh othodov megapolisov i putyah ee resheniya. Gorniy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), 10.
- Kutniashenko, O., Smoliaga, V., Litvinova, T. (2016). Improving the efficiency of household waste recycling by pre-preparation of their dispersed fraction. Polytechnic magazine Metal. Journal - Metallurgical and Mining Industry, 8, 6–14.
- Kurilenko, V. V., Osmolovskaya, N. G., Maksimova, D. A., Kuchaeva, L. N. (2015). Geo-ecological characteristics of kronstadt and assessment of its territory pollution by heavy metals. Vestnik SPbGU, 2, 107–124.
- Podlipskiy, I. I. (2013). Geoekologicheskaya otsenka prilegayuschih territoriy poligona bytovyh othodov (g. Pitkyaranta, Respublika Kareliya). Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle, 2, 48–56.
- Chrysikou, L., Gemenetzis, P., Kouras, A., Manoli, E., Terzi, E., Samara, C. (2008). Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environment International, 34 (2), 210–225. doi: https://doi.org/10.1016/j.envint.2007.08.007
- Kazantseva, L. A., Sippel, A. E. (2018). Environmental and fire danger of a solid waste landfill within the territory of the Sorokinsky raion (the Tyumen oblast). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 5, 22–26. Available at: https://cyberleninka.ru/article/n/ekologicheskaya-i-pozharnaya-opasnost-poligona-tverdyh-bytovyh-othodov-na-territorii-sorokinskogo-rayona-tyumenskoy-oblasti
- Cocean, I., Diaconu, M., Cocean, A., Postolachi, C., Gurlui, S. (2020). Landfill Waste Fire Effects Over Town Areas Under Rainwaters. IOP Conference Series: Materials Science and Engineering, 877, 012048. doi: https://doi.org/10.1088/1757-899x/877/1/012048
- Pan, Y., Yang, L., Zhou, J., Liu, J., Qian, G., Ohtsuka, N. et. al. (2013). Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere, 92 (7), 765–771. doi: https://doi.org/10.1016/j.chemosphere.2013.04.003
- Dos Muchangos, L. S., Tokai, A. (2020). Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique – the case of Hulene dumpsite. Scientific African, 10, e00638. doi: https://doi.org/10.1016/j.sciaf.2020.e00638
- Wang, K., Nakakubo, T. (2020). Comparative assessment of waste disposal systems and technologies with regard to greenhouse gas emissions: A case study of municipal solid waste treatment options in China. Journal of Cleaner Production, 260, 120827. doi: https://doi.org/10.1016/j.jclepro.2020.120827
- Weichenthal, S., Van Rijswijk, D., Kulka, R., You, H., Van Ryswyk, K., Willey, J. et. al. (2015). The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environmental Research, 142, 46–50. doi: https://doi.org/10.1016/j.envres.2015.06.018
- Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M. et. al. (2006). The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences, 93 (2), 223–241. doi: https://doi.org/10.1093/toxsci/kfl055
- Faqi, A. S., Dalsenter, P. R., Merker, H.-J., Chahoud, I. (1998). Reproductive Toxicity and Tissue Concentrations of Low Doses of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Male Offspring Rats Exposed Throughout Pregnancy and Lactation. Toxicology and Applied Pharmacology, 150 (2), 383–392. doi: https://doi.org/10.1006/taap.1998.8433
- Wiwanitkit, V. (2016). Thai waste landfill site fire crisis, particular matter 10, and risk of lung cancer. Journal of Cancer Research and Therapeutics, 12 (2), 1088. doi: https://doi.org/10.4103/0973-1482.172120
- Vassiliadou, I., Papadopoulos, A., Costopoulou, D., Vasiliadou, S., Christoforou, S., Leondiadis, L. (2009). Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere, 74 (7), 879–884. doi: https://doi.org/10.1016/j.chemosphere.2008.11.016
- Cunliffe, A. M., Williams, P. T. (2009). De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Management, 29 (2), 739–748. doi: https://doi.org/10.1016/j.wasman.2008.04.004
- Wang, G., Fan, Z., Wu, D., Qin, L., Zhang, G., Gao, C., Meng, Q. (2014). Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 349, 136–144. doi: https://doi.org/10.1016/j.desal.2014.06.030
- Cabral, M., Garçon, G., Touré, A., Bah, F., Dewaele, D., Bouhsina, S. et. al. (2021). Renal impairment assessment on adults living nearby a landfill: Early kidney dysfunction biomarkers linked to the environmental exposure to heavy metals. Toxicology Reports, 8, 386–394. doi: https://doi.org/10.1016/j.toxrep.2021.02.009
- Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567–S2574. doi: https://doi.org/10.1016/j.arabjc.2013.09.031
- Anna Tałałaj, I., Bartkowska, I., Biedka, P. (2021). Treatment of young and stabilized landfill leachate by integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process. Environmental Nanotechnology, Monitoring & Management, 16, 100502. doi: https://doi.org/10.1016/j.enmm.2021.100502
- Kumar, G., Reddy, K. R., McDougall, J. (2020). Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Computers and Geotechnics, 128, 103836. doi: https://doi.org/10.1016/j.compgeo.2020.103836
- Fiorineschi, L., Frillici, F. S., Rotini, F. (2018). Enhancing functional decomposition and morphology with TRIZ: Literature review. Computers in Industry, 94, 1–15. doi: https://doi.org/10.1016/j.compind.2017.09.004
- MVV No. 081/12-0317-06. Poverkhnevi, pidzemni ta zvorotni vody. Metodyka vykonannia vymiriuvan vodnevoho pokaznyka (rN) elektrometrychnym metodom. Available at: https://budstandart.ua/normativ-document.html?id_doc=76469
- MVV No. 081/12-0106-03. Poverkhnevi, pidzemni ta zvorotni vody. Metodyka vykonannia vymiriuvan masovoi kontsentratsiyi amoniy-ioniv fotokolorymetrychnym metodom z reaktyvom Neslera. Zi zminoiu No. 1. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76427
- MVV No. 081/12-0647-09. Metodyka vykonannia vymiriuvan masovoi kontsentratsiyi KhSK u zvorotnykh, poverkhnevykh i pidzemnykh vodakh fotokolorymetrychnym metodom u diapazoni vid 4 mhO/dm3 do 10000 mhO/dm3 vkliuchno (z vykorystanniam testovoi sumishi reahentiv na vyznachenyi diapazon vymiriuvannia KhSK) (tilky dlia fotometriv abo spektrofotometriv typu PhotoLab Spectral, Spectroquant NOVA, Spektroflex, DR abo analohichnykh). Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76576
- Bondarenko, I. V., Kutniashenko, O. I. (2019). Pat. No. 139374 UA. Systema dlia skorochennia ekolohichnoho zabrudnennia navkolyshnoho seredovyshcha pry pozhezhakh na polihonakh TPV ta v umovakh stykhiynykh smittiezvalyshch. No. a201902114; declareted: 01.03.2019; published: 10.01.2019, Bul. No. 1.
- Bondarenko, I. V. (2012). Pat. No. 103811 UA. Snariad dlia ekolohichnoho ochyshchennia atmosfernoho povitria. No. a201201731; declareted: 16.02.2012; published: 25.11.2013. Bul. No. 22.
- Bondarenko, I. V. (2013). Pat. No. 111828 UA. Drobylnyi ahrehat z hravitatsiino-pnevmatychnym elektropryvodom. No. a201304265; declareted: 05.04.2013; published: 24.06.2016, Bul. No. 12.
- Kieush, L., Schenk, J., Pfeiffer, A., Koveria, A., Rantitsch, G., Hopfinger, H. (2022). Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties. Fuel, 309, 122151. doi: https://doi.org/10.1016/j.fuel.2021.122151
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ivan Bondarenko, Igor Dudar, Olha Yavorovska, Olha Ziuz, Sergii Boichenko, Ihor Kuberskyi, Iryna Shkilniuk, Bohdana Komarysta, Iryna Dzhygyrey, Vladyslav Bendiuh
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.