Improving a neural network model for semantic segmentation of images of monitored objects in aerial photographs
DOI:
https://doi.org/10.15587/1729-4061.2021.248390Keywords:
semantic segmentation of images, convolutional neural network, aerial photograph, unmanned aerial vehicleAbstract
This paper considers a model of the neural network for semantically segmenting the images of monitored objects on aerial photographs. Unmanned aerial vehicles monitor objects by analyzing (processing) aerial photographs and video streams. The results of aerial photography are processed by the operator in a manual mode; however, there are objective difficulties associated with the operator's handling a large number of aerial photographs, which is why it is advisable to automate this process. Analysis of the models showed that to perform the task of semantic segmentation of images of monitored objects on aerial photographs, the U-Net model (Germany), which is a convolutional neural network, is most suitable as a basic model. This model has been improved by using a wavelet layer and the optimal values of the model training parameters: speed (step) ‒ 0.001, the number of epochs ‒ 60, the optimization algorithm ‒ Adam. The training was conducted by a set of segmented images acquired from aerial photographs (with a resolution of 6,000×4,000 pixels) by the Image Labeler software in the mathematical programming environment MATLAB R2020b (USA). As a result, a new model for semantically segmenting the images of monitored objects on aerial photographs with the proposed name U-NetWavelet was built.
The effectiveness of the improved model was investigated using an example of processing 80 aerial photographs. The accuracy, sensitivity, and segmentation error were selected as the main indicators of the model's efficiency. The use of a modified wavelet layer has made it possible to adapt the size of an aerial photograph to the parameters of the input layer of the neural network, to improve the efficiency of image segmentation in aerial photographs; the application of a convolutional neural network has allowed this process to be automatic.
References
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
- Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
- Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
- Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
- Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2018). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: https://doi.org/10.6001/energetika.v64i4.3893
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
- Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/6849
- Holla, A., Pai, M., Verma, U., Pai, R. M. (2020). Efficient Vehicle Counting by Eliminating Identical Vehicles in UAV aerial videos. 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 246–251. doi: https://doi.org/10.1109/discover50404.2020.9278095
- Deng, H., Zhang, Y., Li, R., Hu, C., Feng, Z., Li, H. (2022). Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentation. Tsinghua Science and Technology, 27 (1), 68–78. doi: https://doi.org/10.26599/tst.2020.9010056
- Jing, W., Jin, T., Xiang, D. (2021). Fast Superpixel-Based Clustering Algorithm for SAR Image Segmentation. IEEE Geoscience and Remote Sensing Letters, 1–1. doi: https://doi.org/10.1109/lgrs.2021.3124071
- Xin, L., Chao, L., He, L. (2021). Malicious code detection method based on image segmentation and deep residual network RESNET. 2021 International Conference on Computer Engineering and Application (ICCEA), 473–480. doi: https://doi.org/10.1109/ICCEA53728.2021.00099
- Xie, B., Yang, Z., Yang, L., Luo, R., Wei, A., Weng, X., Li, B. (2021). Multi-Scale Fusion With Matching Attention Model: A Novel Decoding Network Cooperated With NAS for Real-Time Semantic Segmentation. IEEE Transactions on Intelligent Transportation Systems, 1–11. doi: https://doi.org/10.1109/tits.2021.3115705
- Yang, S., Hou, J., Jia, Y., Mei, S., Du, Q. (2021). Superpixel-Guided Discriminative Low-Rank Representation of Hyperspectral Images for Classification. IEEE Transactions on Image Processing, 30, 8823–8835. doi: https://doi.org/10.1109/tip.2021.3120675
- Peng, C., Zhang, K., Ma, Y., Ma, J. (2021). Cross Fusion Net: A Fast Semantic Segmentation Network for Small-Scale Semantic Information Capturing in Aerial Scenes. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13. doi: https://doi.org/10.1109/tgrs.2021.3053062
- Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. doi: https://doi.org/10.1007/978-3-319-24574-4_28
- Jwaid, W. M., Al-Husseini, Z. S. M., Sabry, A. H. (2021). Development of brain tumor segmentation of magnetic resonance imaging (MRI) using U-Net deep learning. Eastern-European Journal of Enterprise Technologies, 4 (9 (112)), 23–31. doi: https://doi.org/10.15587/1729-4061.2021.238957
- Slyusar, V., Protsenko, M., Chernukha, A., Gornostal, S., Rudakov, S., Shevchenko, S. et. al. (2021). Construction of an advanced method for recognizing monitored objects by a convolutional neural network using a discrete wavelet transform. Eastern-European Journal of Enterprise Technologies, 4 (9 (112)), 65–77. doi: https://doi.org/10.15587/1729-4061.2021.238601
- Slyusar, V., Protsenko, M., Chernukha, A., Kovalov, P., Borodych, P., Shevchenko, S. et. al. (2021). Improvement of the model of object recognition in aero photographs using deep convolutional neural networks. Eastern-European Journal of Enterprise Technologies, 5 (2 (113)), 6–21. doi: https://doi.org/10.15587/1729-4061.2021.243094
- Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2015.7298965
- Badrinarayanan, V., Kendall, A., Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (12), 2481–2495. doi: https://doi.org/10.1109/tpami.2016.2644615
- Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. (2017). Pyramid Scene Parsing Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2017.660
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vadym Slyusar, Mykhailo Protsenko, Anton Chernukha, Vasyl Melkin, Olena Petrova, Mikhail Kravtsov, Svitlana Velma, Nataliia Kosenko, Olga Sydorenko, Maksym Sobol
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.