The outlet flow structure of vortex chamber with dead end jet actions

Authors

  • Владимир Николаевич Турик Institute of Mechanical Engineering National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy Avenue, case 1, auditory 255-1, Kyiv, Ukraine, Ukraine https://orcid.org/0000-0002-2357-4483
  • Дмитрий Евгеньевич Милюков Institute of Mechanical Engineering National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy Avenue, case 1, auditory 255-1, Kyiv, Ukraine, Ukraine https://orcid.org/0000-0003-3198-4818

DOI:

https://doi.org/10.15587/1729-4061.2014.24861

Keywords:

vortex chamber, flow structure, energy-carrying vortex formations, control jet, thermoanemometry

Abstract

The analysis of the flow structure uniformity in the running (active) part of the vortex chamber in conditions of organizing various control jets, which affect coherent energy-carrying vortex formations in the dead end region of the vortex chamber is conducted. Thermoanemometry data on multiscale outlet flow structure of chamber in the form of distributions of axial and transverse components of the averaged velocity and the corresponding relative intensity of velocity pulsations depending on the control jet parameters is given. The effect of the ratio of working medium flow rate through the control nozzle and at the vortex chamber outlet on the velocity profiles and their pulsations is studied. For the analysis of the flow structure in the active part of the vortex chamber, a new integral parameter - the intensity irregularity degree of velocity pulsations in the exit section is proposed. It is found that the highest values of the integral intensity irregularity degree of axial pulsations are provided by the flow structure control scheme using a coaxial dead end jet, and transversal pulsations - by control scheme using concurrently directed jet with respect to the spiraling energy-carrying vortex formation in the dead-end part of the chamber. The research results are of interest to vortex chamber developers since the obtained profiles of hydrodynamic characteristics of the outlet flows with the investigated jet control schemes indicate the zones of maximum shear effects, so they allow approximately take into account the anisotropy of mass and energy transfer in evaluating the operating modes of chambers with relatively elongated dead end part. These data may be also useful in selecting rational design solutions at the design stage of vortex devices in energy, metallurgical, chemical, aerospace and other industries depending on the purpose of chambers (mixing, separation of media with different densities, the second component supply to the swirling flow and etc.).

Author Biographies

Владимир Николаевич Турик, Institute of Mechanical Engineering National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy Avenue, case 1, auditory 255-1, Kyiv, Ukraine

PhD, associate professor

Applied hydroairmechanics and mechatronic department

Дмитрий Евгеньевич Милюков, Institute of Mechanical Engineering National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy Avenue, case 1, auditory 255-1, Kyiv, Ukraine

Postgraduate student

Applied hydroairmechanics and mechatronic department

References

  1. Гупта, А. Закрученные потоки [Текст] / А. Гупта, Д. Лилли, Н. Сайред; пер. с англ. – М. : Мир, 1987. – 588 с.
  2. Халатов, А. А. Теплообмен и гидродинамика в полях центробежных массовых сил [Текст]: Т. 3. Закрученные потоки / А. А. Халатов, А. А. Авраменко, И. В. Шевчук. – К.: Институт теплофизики НАН Украины, 2000. – 474 с.
  3. Makarenko R. A ., Turick V. N. Kinematics of Flow in a Dead End Part of a Vortex Chamber [Text] / R. A. Makarenko, V. N. Turick // International Journal of Fluid Mechanics Research. – 2004. – Vol. 31, № 3. – P. 299–306.
  4. Бабенко, В. В. Макет вихревых структур в вихревой камере [Текст] / В. В. Бабенко, В. Н. Турик // Прикладная гидромеханика. – 2008. – Т. 10 (82), № 3. – С. 3–19.
  5. Турик, В. Н. К выбору способа управления структурой течения в тупиковой части вихревой камеры [Текст] / В. Н. Турик, Д. Е. Милюков // Вестник НТУ Украины КПИ: Машиностроение. – 2011. – № 63. – С. 70–73.
  6. Babenko, V. V. Control of the coherent vortical structures of a boundary layer [Text] : Proc. of the CEAS/DragNet Eur. Drag Red. conf. / V. V. Babenko // Aerodynamic Drag Reduction Technologies. – Potsdam, Germany. Berlin, Heidelberg: Springer-Verlag, 2001. – P. 341–350.
  7. Babenko, V. V.The influence of the outflow generated vortex structures on the boundary layer characteristics [Text] / V. V. Babenko, L. F. Kozlov, S. A. Dovgij // The Second IUTAM Symposium on Laminar-Turbulent Transition. – Novosibirsk. – Berlin: Spring¬er-Verlag, 1985. – P. 509–513.
  8. Турик, В. Н. О динамическом методе управления структурой течения в вихревой камере [Текст] / В. Н. Турик, В. В. Бабенко, Д. Е. Милюков // Восточно-Европейский Журнал передовых технологий. – 2012. – Т. 5, №7 (59). – С. 52–59.
  9. Турик, В. М. Теоретичне узагальнення результатів експериментальних досліджень при керуванні структурою течії у вихрових камерах за допомогою коаксіального торцевого струменя [Текст] : матер. міжн. наук.-тех. конф. / В. М. Турик, Д. Є. Мілюков // Гідроаеромеханіка в інженерній практиці». – Київ, 2013. – С. 38–40.
  10. Дыбан, Е. П. Тепломассообмен и гидродинамика турбулизированных потоков [Текст] / Е. П. Дыбан, Э. Я. Эпик. – Киев: Наукова думка, 1985. – 296 с.
  11. Gupta, A., Lilley, D., Syred, N. (1987). Swirling flows [Zakruchennie potoki], 588.
  12. Khalatov, A. A., Avramenko, A. A., Shevchuk, I. V. (2000). Heat transfer and hydrodynamics in the fields of centrifugal-forces. Vol. 3. Swirling flows [Teploobmen i hidrodinamika v polyah zentrobezhnih massovih sil. Tom 3. Zakruchennie potoki], 474.
  13. Makarenko, R. A., Turick, V. N. (2004). Kinematics of Flow in a Dead End Part of a Vortex Chamber. International Journal of Fluid Mechanics Research, Vol. 31, № 3, 299–306.
  14. Babenko, V. V., Turick, V. N . (2008). The Model of Vortical Structures in the Vortical Chamber [ Maket vihrevyh struktur v vihrevoy kamere]. Applied hydromechanics, Vol. 10 (82), №3, 3–19.
  15. Turick, V. N., Miliukov, D. Ye. (2011). To the Choice of Management Current Structure Method in the Dead End Part of a Vortex Chamber [K vyboru sposoba upravleniya strukturoy techeniya v tupikovoy chasti vihrevoy kamery]. Journal of Mechanical Engineering the National Technical University of Ukraine «Kyiv Polytechnic Institute», № 63, 70–73.
  16. Babenko, V. V. (2000). Control of the Coherent Vortical Structures of a Boundary Layer. Aerodynamic Drag Reduction Technologies. Proc. of the CEAS/DragNet European Drag Reduc¬tion Conference. Potsdam, Germany, 341–350.
  17. Babenko, V. V., Kozlov, L. F., Dovgij, S. A. (1985). The Influence of the Outflow Generated Vortex Structures on the Boundary Layer Characteristics. The Second IUTAM Symposium on Laminar-Turbulent Transition, Novosibirsk, 509–513.
  18. Turick, V. N ., Babenko, V. V., Miliukov, D. Ye. (2012). About Dynamic Method of Flow Structure Control in Vortex Chamber [O dinamicheskom metode upravleniya srukturoy techeniya v vihrevoy kamere]. Eastern-European Journal of Enterprise Technologies, Vol. 5/7 (59), 52–59.
  19. Turick, V. N ., Miliukov, D. Ye. (2013). Teoretical Generalization of Experimental Results by Flow Structure Control in the Vortex Chamber by Means of the Steaming Coaxial Flow [Teoretychne uzagalnennya rezultativ experymentalnyh doslidzhen’ pry keruvanni strukturoyu techiyi u vyhrovyh kamerah za dopomogoyu koaxial’nogo torzyovogo strumenya]. International Scientific Conference « Hydroaeromechanics in engineering practice», 38–40.
  20. Dyban, E. P., Epick, E. Ya. (1985). Heat and Mass Transfer and Hydrodynamics of Turbulize Flows [Teplomassoobmen i hydrodinamika turbulizirovannyh potokov], 296.

Published

2014-06-25

How to Cite

Турик, В. Н., & Милюков, Д. Е. (2014). The outlet flow structure of vortex chamber with dead end jet actions. Eastern-European Journal of Enterprise Technologies, 3(8(69), 45–51. https://doi.org/10.15587/1729-4061.2014.24861

Issue

Section

Energy-saving technologies and equipment