Molecular pump functioning due to fluctuations of intramembrane potential
DOI:
https://doi.org/10.15587/1729-4061.2014.24886Keywords:
nanomachines, nanomechanisms, Brownian motors, molecular pumps, near-surface diffusion, nonequilibrium fluctuationsAbstract
The paper considers a model of the molecular pump, which creates a directed motion of nanoparticles through the cell membrane, at the edges of which the preset concentrations are maintained due to fluctuations of intramembrane potential. For this model, the numerical solution of equations for the particle flow at the stochastic switching of two sawtooth potentials with given switching frequencies is obtained. This solution has allowed to determine the dependence of the particle flow and concentration ratio at the membrane edges at zero flow on such system parameters as temperature, spatial amplitude and the fluctuation frequency of the potential profile. Also, low-frequency asymptotics is obtained, which has allowed to compare the mechanisms of molecular pump and motor, operating in the same mode of the potential energy fluctuations, namely in the high-temperature region, the particle flow through the membrane greatly exceeds the particle flow of motor with parameters, corresponding to the considered pump. Furthermore, it is found that the pump can function in the mode of potential energy sign fluctuations whereas such operation is prohibited for the corresponding motor. These patterns are caused by the difference in the boundary conditions of the pump and motor: setting concentrations on the membrane edges for the pump and periodic boundary conditions for the motor.References
- Hille, B. Ion Channels in ExcitableMembranes, 3rd ed. [Текст] / B. Hille. – Sunderland, MA: Sinauer Associates, 2001. – P. 1-93.
- Howard, J. Mechanics of Motor Proteins and the Cytoskeleton [Text] / J. Howard // Sinauer Associates, Sunderland, Massachusetts. – 2001. – Part II. – P. 117.
- Alberts, B. Molecular Biology of the Cell, 4th ed. [Text] / B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. – New York: Garland Science, 2002. – 1392 p.
- Reimann, P. Brownian Motors: Noisy Transport far from Equilibrium [Text] / P. Reimann // Phys. Reports. – 2002. – Vol. 361, Issue 2-4. – P. 57–265.
- Hänggi, P. Artificial Brownian motors: Controlling transport on the nanoscale [Text] / P. Hänggi, F. Marchesoni // Rev. Mod. Phys. – 2009. – 81. – P. 387-442.
- Tsong, T. Y. Absorption and conversion of electric field energy by membrane bound ATPase [Text] / T. Y. Tsong, R. D. Astumian // Bioelectrochem. Bioenerg. – 1986. – 15. – P. 457-476.
- Markin, V. S. Energy transduction between a concentration gradient and an alternating electric field [Text] / V. S. Markin, T. Y. Tsong, R. D. Astumian, and R. Robertson // J. Chem. Phys. – 1990. – № 93. – P. 5062-5066.
- Markin, V. S. Frequency and concentration windows for the electric activation of a membrane active transport system [Text] / V. S. Markin, T. Y. Tsong // Biophys. J. – 1991. – № 59 (6). – P. 1308-1316.
- Chen, Y. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid [Text] / Y. Chen, T. Y. Tsong, // Biophys. J. – 1994. – № 66. – P. 2151-2158.
- Rozenbaum, V. M. Catalytic wheel as a Brownian Motor [Text] / V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, T.Y. Tsong // J. Phys. Chem. B. – 2004. – 108. – P. 15880-15889.
- Корочкова, Т. Е. Молекулярный насос, управляемый флуктуациями электрического поля [Текст] / Т. Е. Корочкова, В. М. Розенбаум; под ред. П. П. Горбика // Химия, физика и технология поверхности. – 2006. – Вып. 11-12. – С. 29–40.
- Gomez-Marin Two-state flashing molecular pump [Text] / Gomez-Marin, J. M. Sancho // EPL 86. – 2009. – P. 40002.
- Rozenbaum, V. M. Adiabatically driven Brownian pumps [Text] / V. M. Rozenbaum, Yu. A. Makhnovskii, I. V. Shapochkina, S.-Y. Sheu, D.-Y. Yang, S. H. Lin // Phys. Rev. E. – 2013. – 88, No. 1. – 012104-1-7.
- Risken, H. The Fokker-Planck Equation [Text] / H. Risken. – Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, XVI, 454 p.
- Rozenbaum, V. M. Brownian motor with competing spatial and temporal asymmetry of potential energy [Text] / V. M. Rozenbaum, T. Ye. Korochkova, A. A. Chernova and M. L. Dekhtyar // Phys. Rev. E. – 2011. – 83, No. 5. – 051120-1-10.
- Корочкова, Т. Е. Точные аналитические решения в теории броуновских моторов и насосов. [Текст] / Т. Е. Корочкова, Н. Г. Шкода, А. А. Чернова, В. М. Розенбаум // Поверхность – 2012. – № 4(19). – P. 19–35.
- Hille, B. (2001). Ion Channels in ExcitableMembranes, 3rd ed. Sun¬derland, MA: Sinauer Associates, 1-93.
- Howard, J. (2001). Mechanics of Motor Proteins and the Cytoskel¬eton // Sinauer Associates, Sunderland, Massachusetts, Part II, 117.
- Alberts, B., Johnson. A., Lewis J., Raff M., Roberts K., Walter P. (2002). Molecular Biology of the Cell, 4th ed. New York: Garland Science, 1392.
- Reimann, P. (2002). Brownian Motors: Noisy Transport far from Equilibrium. Phys. Reports, Vol. 361, Iss. 2-4, 57-265.57.
- Hänggi, P., Marchesoni, F. (2009). Artificial Brownian motors: Con¬trolling transport on the nanoscale. Rev. Mod. Phys., 81, 387-442.
- Tsong, T. Y., Astumian, R. D. (1986). Absorption and conversion of electric field energy by membrane bound ATPase. Bioelectrochem. Bioenerg, 15, 457-476.
- Markin, V. S., Tsong, T. Y., Astumian, R. D., Robertson, R. (1990). Energy transduction between a concentration gradient and an alternating electric field. J. Chem. Phys., 93, 5062-5066.
- Markin, V. S., Tsong, T. Y. (1991). Frequency and concentration windows for the electric activation of a membrane active transport system. Biophys. J., 59 (6), 1308-1316.
- Chen, Y., Tsong, T. Y. (1994). Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid. Biophys. J., 66, 2151-2158.
- Rozenbaum, V. M., Yang, D.-Y., Lin, S. H., Tsong, T. Y. (2004). Catalytic wheel as a Brownian Motor. J. Phys. Chem. B, 108, 15880- 15889.
- Korochkova, T. Ye., Rozenbaum, V. M. (2006). Molekulyarnyi nasos, upravlyaemyi fluktuatciyami elektricheskogo polya. Chemistry, physics and technology of surface Issue 11-12, 436, 29-40.
- Gomez-Marin, Sancho, J. M. (2009). Two-state flashing molecular pump. EPL 86, 40002.
- Rozenbaum, V. M., Makhnovskii, Yu. A., Shapochkina, I. V., Sheu, S.-Y., Yang, D.-Y., Lin, S. H. (2013). Adiabatically driven Brownian pumps. Phys. Rev. E, 88, No. 1, 012104-1-7.
- Risken, H. (1984). The Fokker-Planck Equation. Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, XVI, 454.
- Rozenbaum, V. M., Korochkova, T. Ye., Chernova, A. A., Dekhtyar, M. L. (2011). Brownian motor with competing spatial and temporal asymmetry of potential energy. Phys. Rev. E, 83, No.5, 051120-1-10.
- Korochkova, T. Ye., Shkoda, N.G., Chernova, A. A., Rozenbaum, V. M. (2012). Tochnye analiticheskie resheniya v teorii brounovskih motorov I nasosov. The surface, № 4(19), 19–35.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Таисия Евгеневна Корочкова, Василий Александрович Машира, Наталия Григорьевна Шкода, Виктор Михайлович Розенбаум
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.