Molecular pump functioning due to fluctuations of intramembrane potential

Authors

  • Таисия Евгеневна Корочкова Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164, Ukraine
  • Василий Александрович Машира Kurdumov Institute of Metalophysics of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164, Ukraine
  • Наталия Григорьевна Шкода Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164, Ukraine
  • Виктор Михайлович Розенбаум Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, Ukraine, 03164, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.24886

Keywords:

nanomachines, nanomechanisms, Brownian motors, molecular pumps, near-surface diffusion, nonequilibrium fluctuations

Abstract

The paper considers a model of the molecular pump, which creates a directed motion of nanoparticles through the cell membrane, at the edges of which the preset concentrations are maintained due to fluctuations of intramembrane potential. For this model, the numerical solution of equations for the particle flow at the stochastic switching of two sawtooth potentials with given switching frequencies is obtained. This solution has allowed to determine the dependence of the particle flow and concentration ratio at the membrane edges at zero flow on such system parameters as temperature, spatial amplitude and the fluctuation frequency of the potential profile. Also, low-frequency asymptotics is obtained, which has allowed to compare the mechanisms of molecular pump and motor, operating in the same mode of the potential energy fluctuations, namely in the high-temperature region, the particle flow through the membrane greatly exceeds the particle flow of motor with parameters, corresponding to the considered pump. Furthermore, it is found that the pump can function in the mode of potential energy sign fluctuations whereas such operation is prohibited for the corresponding motor. These patterns are caused by the difference in the boundary conditions of the pump and motor: setting concentrations on the membrane edges for the pump and periodic boundary conditions for the motor.

Author Biographies

Таисия Евгеневна Корочкова, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164

Ph. D.

Scientific Associate

Department of Theory of Nanostructured Systems

Василий Александрович Машира, Kurdumov Institute of Metalophysics of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164

Senior Research

Department of crystallization

Наталия Григорьевна Шкода, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str., 17, Kyiv, Ukraine, 03164

Ph. D.

Scientific Associate

Department of Theory of Nanostructured Systems

Виктор Михайлович Розенбаум, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, Ukraine, 03164

The Head of the Department

Doctor of Science

Department of Theory of Nanostructured Systems

References

  1. Hille, B. Ion Channels in ExcitableMembranes, 3rd ed. [Текст] / B. Hille. – Sunderland, MA: Sinauer Associates, 2001. – P. 1-93.
  2. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton [Text] / J. Howard // Sinauer Associates, Sunderland, Massachusetts. – 2001. – Part II. – P. 117.
  3. Alberts, B. Molecular Biology of the Cell, 4th ed. [Text] / B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. – New York: Garland Science, 2002. – 1392 p.
  4. Reimann, P. Brownian Motors: Noisy Transport far from Equilibrium [Text] / P. Reimann // Phys. Reports. – 2002. – Vol. 361, Issue 2-4. – P. 57–265.
  5. Hänggi, P. Artificial Brownian motors: Controlling transport on the nanoscale [Text] / P. Hänggi, F. Marchesoni // Rev. Mod. Phys. – 2009. – 81. – P. 387-442.
  6. Tsong, T. Y. Absorption and conversion of electric field energy by membrane bound ATPase [Text] / T. Y. Tsong, R. D. Astumian // Bioelectrochem. Bioenerg. – 1986. – 15. – P. 457-476.
  7. Markin, V. S. Energy transduction between a concentration gradient and an alternating electric field [Text] / V. S. Markin, T. Y. Tsong, R. D. Astumian, and R. Robertson // J. Chem. Phys. – 1990. – № 93. – P. 5062-5066.
  8. Markin, V. S. Frequency and concentration windows for the electric activation of a membrane active transport system [Text] / V. S. Markin, T. Y. Tsong // Biophys. J. – 1991. – № 59 (6). – P. 1308-1316.
  9. Chen, Y. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid [Text] / Y. Chen, T. Y. Tsong, // Biophys. J. – 1994. – № 66. – P. 2151-2158.
  10. Rozenbaum, V. M. Catalytic wheel as a Brownian Motor [Text] / V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, T.Y. Tsong // J. Phys. Chem. B. – 2004. – 108. – P. 15880-15889.
  11. Корочкова, Т. Е. Молекулярный насос, управляемый флуктуациями электрического поля [Текст] / Т. Е. Корочкова, В. М. Розенбаум; под ред. П. П. Горбика // Химия, физика и технология поверхности. – 2006. – Вып. 11-12. – С. 29–40.
  12. Gomez-Marin Two-state flashing molecular pump [Text] / Gomez-Marin, J. M. Sancho // EPL 86. – 2009. – P. 40002.
  13. Rozenbaum, V. M. Adiabatically driven Brownian pumps [Text] / V. M. Rozenbaum, Yu. A. Makhnovskii, I. V. Shapochkina, S.-Y. Sheu, D.-Y. Yang, S. H. Lin // Phys. Rev. E. – 2013. – 88, No. 1. – 012104-1-7.
  14. Risken, H. The Fokker-Planck Equation [Text] / H. Risken. – Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, XVI, 454 p.
  15. Rozenbaum, V. M. Brownian motor with competing spatial and temporal asymmetry of potential energy [Text] / V. M. Rozenbaum, T. Ye. Korochkova, A. A. Chernova and M. L. Dekhtyar // Phys. Rev. E. – 2011. – 83, No. 5. – 051120-1-10.
  16. Корочкова, Т. Е. Точные аналитические решения в теории броуновских моторов и насосов. [Текст] / Т. Е. Корочкова, Н. Г. Шкода, А. А. Чернова, В. М. Розенбаум // Поверхность – 2012. – № 4(19). – P. 19–35.
  17. Hille, B. (2001). Ion Channels in ExcitableMembranes, 3rd ed. Sun¬derland, MA: Sinauer Associates, 1-93.
  18. Howard, J. (2001). Mechanics of Motor Proteins and the Cytoskel¬eton // Sinauer Associates, Sunderland, Massachusetts, Part II, 117.
  19. Alberts, B., Johnson. A., Lewis J., Raff M., Roberts K., Walter P. (2002). Molecular Biology of the Cell, 4th ed. New York: Garland Science, 1392.
  20. Reimann, P. (2002). Brownian Motors: Noisy Transport far from Equilibrium. Phys. Reports, Vol. 361, Iss. 2-4, 57-265.57.
  21. Hänggi, P., Marchesoni, F. (2009). Artificial Brownian motors: Con¬trolling transport on the nanoscale. Rev. Mod. Phys., 81, 387-442.
  22. Tsong, T. Y., Astumian, R. D. (1986). Absorption and conversion of electric field energy by membrane bound ATPase. Bioelectrochem. Bioenerg, 15, 457-476.
  23. Markin, V. S., Tsong, T. Y., Astumian, R. D., Robertson, R. (1990). Energy transduction between a concentration gradient and an alternating electric field. J. Chem. Phys., 93, 5062-5066.
  24. Markin, V. S., Tsong, T. Y. (1991). Frequency and concentration windows for the electric activation of a membrane active transport system. Biophys. J., 59 (6), 1308-1316.
  25. Chen, Y., Tsong, T. Y. (1994). Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid. Biophys. J., 66, 2151-2158.
  26. Rozenbaum, V. M., Yang, D.-Y., Lin, S. H., Tsong, T. Y. (2004). Catalytic wheel as a Brownian Motor. J. Phys. Chem. B, 108, 15880- 15889.
  27. Korochkova, T. Ye., Rozenbaum, V. M. (2006). Molekulyarnyi nasos, upravlyaemyi fluktuatciyami elektricheskogo polya. Chemistry, physics and technology of surface Issue 11-12, 436, 29-40.
  28. Gomez-Marin, Sancho, J. M. (2009). Two-state flashing molecular pump. EPL 86, 40002.
  29. Rozenbaum, V. M., Makhnovskii, Yu. A., Shapochkina, I. V., Sheu, S.-Y., Yang, D.-Y., Lin, S. H. (2013). Adiabatically driven Brownian pumps. Phys. Rev. E, 88, No. 1, 012104-1-7.
  30. Risken, H. (1984). The Fokker-Planck Equation. Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, XVI, 454.
  31. Rozenbaum, V. M., Korochkova, T. Ye., Chernova, A. A., Dekhtyar, M. L. (2011). Brownian motor with competing spatial and temporal asymmetry of potential energy. Phys. Rev. E, 83, No.5, 051120-1-10.
  32. Korochkova, T. Ye., Shkoda, N.G., Chernova, A. A., Rozenbaum, V. M. (2012). Tochnye analiticheskie resheniya v teorii brounovskih motorov I nasosov. The surface, № 4(19), 19–35.

Published

2014-06-19

How to Cite

Корочкова, Т. Е., Машира, В. А., Шкода, Н. Г., & Розенбаум, В. М. (2014). Molecular pump functioning due to fluctuations of intramembrane potential. Eastern-European Journal of Enterprise Technologies, 3(6(69), 31–36. https://doi.org/10.15587/1729-4061.2014.24886

Issue

Section

Technology organic and inorganic substances