Numerical simulation of flow and mixing processes within cylindrical stabiliser burner

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.24895

Keywords:

stabilizer burner, cylindrical flame stabilizer, transfer processes intensification

Abstract

A complex of numerical simulation on determining the patterns of the influence of various ways of transfer processes intensification in cylindrical stabilizer burners with fuel feed by introducing in the cross flow of oxidant on the characteristics of these processes is performed. The studies of the influence of a rectangular annular recess on the flow parameters in cylindrical burner are conducted. It is found that, in the presence of recess, the flow turbulence intensity increases. Moreover, at places of its maximum values it may almost twice exceed the corresponding quantities in the absence of recess. Zone of the greatest influence of the recess on the flow turbulization is localized near its position, which is important for fuel ignition and flame stabilization. Pressure losses, associated with the presence of the annular rectangular recess are small and, for the considered conditions, do not exceed 6% of the total pressure losses in the burner in the absence of recess. The analysis of opportunities of flow and mixing intensification in cylindrical burners by mounting plate flow turbulators on stalling edges of the stabilizer is carried out. It is shown that using turbulators provides significant flow turbulization, which is to the greatest extent apparent near the boundaries of recirculation mixing zones. This is accompanied by mixing processes intensification in accordance with fuel and oxidant flow turbulization.

Author Biographies

Наталия Михайловна Фиалко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Honored worker of Scientist of Ukraine, Corresponding Member of the, Doctor of Technical Science, Professor, Head of Small Power Department NAS of Ukraine

Юлий Владиславович Шеренковский, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Sciences, Senior Research Scientist

Николай Владимирович Майсон, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Scientist

Наталья Олеговна Меранова, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Sciences, Senior Research Scientist

Михаил Загретдинович Абдулин, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Sciences, Senior Research Scientist

Леонид Сергеевич Бутовский, National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect Peremohy 37, Kyiv, Ukraine, 03056

Candidate of Sciences, Associate Professor, Senior Lecturer

Department of Heat-and-power engineering plants of thermoelectric and nuclear power stations

Нина Петровна Полозенко, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Scientist

Андрей Владимирович Клищ, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Postgraduate Student

Светлана Николаевна Стрижеус, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Scientist

Александра Борисовна Тимощенко, NAS of Ukraine Institute of Engineering Thermophysics Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Scientist

References

  1. Ahmed, S. F. Spark ignition of turbulent nonpremixed bluff-body flames [Text] / S. F. Ahmed, R. Balachandran, T. Marchione, E. Mastorakos // Combustion and Flame. – 2007. – Vol. 151. – P. 366–385.
  2. Triantafyllidis, A. Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure [Text] / A. Triantafyllidis, E. Mastorakos, R. L. G. M. Eggels // Combustion and Flame. – 2009. – Vol. 156. – P. 2328–2345.
  3. Subramanian, V. Large eddy simulation of forced ignition of an annular bluff-body burner [Text] / V. Subramanian, P. Domingo, L. Vervisch // Combustion and Flame. – 2010. – Vol. 157. – P. 579–601.
  4. Dally, B. B. Measurements of no in turbulent non-premixed flames stabilized on a bluff body [Text] : twenty-sixth intern. symp. / B. B. Dally, A. R. Masri, R. S. Barlow, G. J. Fiechtner, D. F. Fletcher // Twenty-Sixth Symposium (International) on Combustion / The Combustion Institute, 1996. – P. 2191–2197.
  5. Navarro-Martinez, S. LES-CMC simulations of a turbulent bluff-body flame [Text] / S. Navarro-Martinez, A. Kronenburg // Proceedings of the Combustion Institute. – 2007. – Vol. 31. – P. 1721–1728.
  6. Bagheri, G. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture [Text] / G. Bagheri, S. E. Hosseini, M. A. Wahid // Applied Thermal Engineering. – 2014. – Vol. 67. – P. 266–272.
  7. Фиалко, Н. М. Компьютерное моделирование процесса смесеобразования в горелочных устройствах стабилизаторного типа с подачей газа внедрением в сносящий поток воздуха [Текст] / Н. М. Фиалко, Л. С. Бутовский, В. Г. Прокопов // Промышленная теплотехника. – 2011. – Т. 33, № 1. – С. 51–56.
  8. Terekhov, V. I. Vortex formation and heat transfer at turbulent streamlining of transverse cavities with inclined front and back walls [Text] / V. I. Terekhov, N. I. Yarygina, A. Yu. D’yachenko // International Journal of Heat and Mass Transfer. – 2008. – Vol. 51, № 13–14. – P .3275–3286.
  9. Леонтьев, А. И. Вихревая интенсификация тепло-и массообменных процессов с помощью луночных технологий (численное и физическое моделирование) [Текст] / А. И. Леонтьев, С. А. Исаев // Труды 5-ой Национальной конференции по теплообмену (РНКТ-5), Москва. – М.: Изд-во МЭИ (ТУ). – 2010. – Т. 6. – С. 102–105.
  10. Бутовський, Л. С. Експериментальні дослідження структури течії у пальникових пристроях стабілізаторного типу з застосуванням кутових турбулізаторів потоку [Текст] : матер. ХХII межд. конф. / Л. С. Бутовський, Н. М. Фіалко, В. Г. Прокопов та ін. // Проблемы экологии и эксплуатации объектов энергетики (Ялта 8-12 июня 2012 г). – Киев, 2012. – С. 141–145.
  11. Ahmed, S. F., Balachandran, R., Marchione, T., Mastorakos, E. (2007). Spark ignition of turbulent nonpremixed bluff-body flames. Combustion and Flame, 151, 366–385.
  12. Triantafyllidis, A., Mastorakos, E., Eggels, R. L. G. M. (2009). Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure. Combustion and Flame, 156, 2328–2345.
  13. Subramanian, V., Domingo, P., Vervisch, L. (2010). Large eddy simulation of forced ignition of an annular bluff-body burner. Combustion and Flame, 157, 579–601.
  14. Dally, B. B., Masri, A. R., Barlow, R. S., Fiechtner, G. J., Flet-cher, D. F. (1996). Measurements of no in turbulent non-premixed flames stabilized on a bluff body. Twenty-Sixth Symposium (Inter¬national) on Combustion/The Combustion Institute, 2191–2197.
  15. Navarro-Martinez, S., Kronenburg, A. (2007). LES-CMC simulations of a turbulent bluff-body flame. Proceedings of the Combustion Institute, 31, 1721–1728.
  16. Bagheri, G., Hosseini, S. E., Wahid, M. A. (2014). Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture. Applied Thermal En-gineering, 67, 266–272.
  17. Fialko, N. M., Butovsky, L. S., Prokopov, V. G., Sherenkov-skiy, Ju. V., Meranova, N. О., Аleshko, S. A., Polozeko, N. P. (2011). The computer modeling of mixture formation processes in the furnace device of stabilizer type with gas supply by pen¬etration into concurrent air flow. Industrial Heat Engineering, 33(1), 51–57.
  18. Terekhov, V. I., Yarygina, N. I., D’yachenko, A. Yu. (2008). Vortex formation and heat transfer at turbulent streamlining of transverse cavities with inclined front and back walls. International Journal of Heat and Mass Transfer, 51(13–14), 3275–3286.
  19. Leontiev, A. I., Isaev, S. A. (2010). Vortex intensification of heat and mass transfer processes using alveolar technology (nu¬merical and physical modeling). Proceedings of the 5th National Conference on Heat Transfer, 6, 102–105.
  20. Butovsky, L. S., Fialko, N. M., Prokopov, V. G., Zaritskiy, O. A., Sherenkovskiy, Ju. V., Timoshchenko, O. B. (2012). Experimental investigation of flow structure within stabilizer burners with angled flow energizers. Ecology and operation problems of power installation: ХХII international conference materials, 141-145.

Published

2014-06-25

How to Cite

Фиалко, Н. М., Шеренковский, Ю. В., Майсон, Н. В., Меранова, Н. О., Абдулин, М. З., Бутовский, Л. С., Полозенко, Н. П., Клищ, А. В., Стрижеус, С. Н., & Тимощенко, А. Б. (2014). Numerical simulation of flow and mixing processes within cylindrical stabiliser burner. Eastern-European Journal of Enterprise Technologies, 3(8(69), 40–44. https://doi.org/10.15587/1729-4061.2014.24895

Issue

Section

Energy-saving technologies and equipment